Lee Dongkyu, Gao Xiang, Sun Lixin, Jee Youngseok, Poplawsky Jonathan, Farmer Thomas O, Fan Lisha, Guo Er-Jia, Lu Qiyang, Heller William T, Choi Yongseong, Haskel Daniel, Fitzsimmons Michael R, Chisholm Matthew F, Huang Kevin, Yildiz Bilge, Lee Ho Nyung
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Department of Mechanical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
Nat Commun. 2020 Mar 13;11(1):1371. doi: 10.1038/s41467-020-15153-8.
Oxygen vacancies in complex oxides are indispensable for information and energy technologies. There are several means to create oxygen vacancies in bulk materials. However, the use of ionic interfaces to create oxygen vacancies has not been fully explored. Herein, we report an oxide nanobrush architecture designed to create high-density interfacial oxygen vacancies. An atomically well-defined (111) heterointerface between the fluorite CeO and the bixbyite YO is found to induce a charge modulation between Y and Ce ions enabled by the chemical valence mismatch between the two elements. Local structure and chemical analyses, along with theoretical calculations, suggest that more than 10% of oxygen atoms are spontaneously removed without deteriorating the lattice structure. Our fluorite-bixbyite nanobrush provides an excellent platform for the rational design of interfacial oxide architectures to precisely create, control, and transport oxygen vacancies critical for developing ionotronic and memristive devices for advanced energy and neuromorphic computing technologies.
复杂氧化物中的氧空位对于信息和能源技术而言不可或缺。在块状材料中,有多种方法可用于制造氧空位。然而,利用离子界面来制造氧空位的方法尚未得到充分探索。在此,我们报道了一种旨在制造高密度界面氧空位的氧化物纳米刷结构。我们发现,萤石型CeO₂与方铁锰矿型Y₂O₃之间原子尺度上定义明确的(111)异质界面,会因这两种元素之间的化学价不匹配而在Y和Ce离子之间引发电荷调制。局部结构和化学分析以及理论计算表明,超过10%的氧原子会自发去除,而不会破坏晶格结构。我们的萤石-方铁锰矿纳米刷为合理设计界面氧化物结构提供了一个出色的平台,以便精确制造、控制和传输氧空位,这对于开发用于先进能源和神经形态计算技术的离子电子器件和忆阻器件至关重要。