Suppr超能文献

一种基于多目标粒子优化的细胞类型检测聚类集成方法。

A Clustering Ensemble Method for Cell Type Detection by Multiobjective Particle Optimization.

作者信息

Liu Qiaoming, Zhao Xudong, Wang Guohua

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):1-14. doi: 10.1109/TCBB.2021.3132400. Epub 2023 Feb 3.

Abstract

Single-cell RNA sequencing (scRNA-seq) is a new technology different from previous sequencing methods that measure the average expression level for each gene across a large population of cells. Thus, new computational methods are required to reveal cell types among cell populations. We present a clustering ensemble algorithm using optimized multiobjective particle (CEMP). It is featured with several mechanisms: 1) A multi-subspace projection method for mapping the original data to low-dimensional subspaces is applied in order to detect complex data structure at both gene level and sample level. 2) The basic partition module in different subspaces is utilized to generate clustering solutions. 3) A transforming representation between clusters and particles is used to bridge the gap between the discrete clustering ensemble optimization problem and the continuous multiobjective optimization algorithm. 4) We propose a clustering ensemble optimization. To guide the multiobjective ensemble optimization process, three cluster metrics are embedded into CEMP as objective functions in which the final clustering will be dynamically evaluated. Experiments on 9 real scRNA-seq datasets indicated that CEMP had superior performance over several other clustering algorithms in clustering accuracy and robustness. The case study conducted on mouse neuronal cells identified main cell types and cell subtypes successfully.

摘要

单细胞RNA测序(scRNA-seq)是一种不同于以往测序方法的新技术,以往的测序方法是测量大量细胞中每个基因的平均表达水平。因此,需要新的计算方法来揭示细胞群体中的细胞类型。我们提出了一种使用优化多目标粒子的聚类集成算法(CEMP)。它具有多种机制:1)应用一种多子空间投影方法将原始数据映射到低维子空间,以便在基因水平和样本水平检测复杂的数据结构。2)利用不同子空间中的基本划分模块生成聚类解决方案。3)使用聚类与粒子之间的变换表示来弥合离散聚类集成优化问题与连续多目标优化算法之间的差距。4)我们提出了一种聚类集成优化方法。为了指导多目标集成优化过程,将三个聚类指标作为目标函数嵌入到CEMP中,通过这些目标函数对最终聚类进行动态评估。对9个真实的scRNA-seq数据集进行的实验表明,CEMP在聚类准确性和鲁棒性方面优于其他几种聚类算法。对小鼠神经元细胞进行的案例研究成功识别出了主要细胞类型和细胞亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验