Suppr超能文献

使用在线干扰抑制和预测系统减少全闭环人工胰腺系统中的高血糖。

Using an Online Disturbance Rejection and Anticipation System to Reduce Hyperglycemia in a Fully Closed-Loop Artificial Pancreas System.

机构信息

Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.

出版信息

J Diabetes Sci Technol. 2022 Jan;16(1):52-60. doi: 10.1177/19322968211059159. Epub 2021 Dec 3.

Abstract

INTRODUCTION

Hyperglycemia following meals is a recurring challenge for people with type 1 diabetes, and even the most advanced available automated systems currently require manual input of carbohydrate amounts. To progress toward fully automated systems, we present a novel control system that can automatically deliver priming boluses and/or anticipate eating behaviors to improve postprandial full closed-loop control.

METHODS

A model predictive control (MPC) system was enhanced by an automated bolus system reacting to early glucose rise and/or a multistage MPC (MS-MPC) framework to anticipate historical patterns. Priming was achieved by detecting large glycemic disturbances, such as meals, and delivering a fraction of the patient's total daily insulin (TDI) modulated by the disturbance's likelihood (bolus priming system [BPS]). In the anticipatory module, glycemic disturbance profiles were generated from historical data using clustering to group days with similar behaviors; the probability of each cluster is then evaluated at every controller step and informs the MS-MPC framework to anticipate each profile. We tested four configurations: MPC, MPC + BPS, MS-MPC, and MS-MPC + BPS in simulation to contrast the effect of each controller module.

RESULTS

Postprandial time in range was highest for MS-MPC + BPS: 60.73 ± 25.39%, but improved with each module: MPC + BPS: 56.95±25.83 and MS-MPC: 54.83 ± 26.00%, compared with MPC: 51.79 ± 26.12%. Exposure to hypoglycemia was maintained for all controllers (time below 70 mg/dL <0.5%), and improvement came primarily from a reduction in postprandial time above range (MS-MPC + BPS: 39.10 ± 25.32%, MPC + BPS: 42.99 ± 25.81%, MS-MPC: 45.09 ± 25.96%, MPC: 48.18 ± 26.09%).

CONCLUSIONS

The BPS and anticipatory disturbance profiles improved blood glucose control and were most efficient when combined.

摘要

介绍

餐后高血糖是 1 型糖尿病患者面临的一个常见问题,即使是目前最先进的自动化系统也需要手动输入碳水化合物的量。为了向完全自动化系统发展,我们提出了一种新的控制系统,该系统可以自动输送起始量和/或预测进食行为,以改善餐后闭环控制。

方法

模型预测控制(MPC)系统通过自动输注系统对早期血糖升高做出反应,或通过多阶段 MPC(MS-MPC)框架来预测历史模式进行了增强。通过检测大的血糖波动(如进餐),并根据干扰的可能性对患者每日胰岛素总量(TDI)进行调制来实现起始输注(起始量输注系统[BPS])。在预测模块中,使用聚类从历史数据中生成血糖波动曲线,以将具有相似行为的天数分组;然后在每个控制器步骤评估每个簇的概率,并通知 MS-MPC 框架预测每个曲线。我们在模拟中测试了四种配置:MPC、MPC+BPS、MS-MPC 和 MS-MPC+BPS,以对比每个控制器模块的效果。

结果

MS-MPC+BPS 的餐后时间达标率最高(60.73 ± 25.39%),但每个模块都有改善:MPC+BPS(56.95 ± 25.83%)和 MS-MPC(54.83 ± 26.00%),而 MPC 为(51.79 ± 26.12%)。所有控制器的低血糖暴露都得到了维持(血糖<70mg/dL 的时间<0.5%),改善主要来自于餐后时间过长(MS-MPC+BPS:39.10 ± 25.32%,MPC+BPS:42.99 ± 25.81%,MS-MPC:45.09 ± 25.96%,MPC:48.18 ± 26.09%)。

结论

BPS 和预测性干扰曲线改善了血糖控制,并且当它们结合使用时效率最高。

相似文献

1
Using an Online Disturbance Rejection and Anticipation System to Reduce Hyperglycemia in a Fully Closed-Loop Artificial Pancreas System.
J Diabetes Sci Technol. 2022 Jan;16(1):52-60. doi: 10.1177/19322968211059159. Epub 2021 Dec 3.
2
Evaluation of an Automated Priming Bolus for Improving Prandial Glucose Control in Full Closed Loop Delivery.
Diabetes Technol Ther. 2025 Feb;27(2):93-100. doi: 10.1089/dia.2024.0315. Epub 2024 Nov 6.
6
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
Research Gaps, Challenges, and Opportunities in Automated Insulin Delivery Systems.
Diabetes Technol Ther. 2025 Jul;27(S3):S60-S71. doi: 10.1089/dia.2025.0129.
9
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.

引用本文的文献

1
A Performance-Based Adaptation Index for Automated Insulin Delivery Systems.
J Diabetes Sci Technol. 2025 Feb 5:19322968251315499. doi: 10.1177/19322968251315499.
2
Mealtime prediction using wearable insulin pump data to support diabetes management.
Sci Rep. 2024 Sep 9;14(1):21013. doi: 10.1038/s41598-024-71630-w.

本文引用的文献

1
Fully Automated Artificial Pancreas for Adults With Type 1 Diabetes Using Multiple Hormones: Exploratory Experiments.
Can J Diabetes. 2021 Dec;45(8):734-742. doi: 10.1016/j.jcjd.2021.02.002. Epub 2021 Feb 20.
2
Safety and Feasibility Evaluation of Step Count Informed Meal Boluses in Type 1 Diabetes: A Pilot Study.
J Diabetes Sci Technol. 2022 May;16(3):670-676. doi: 10.1177/1932296821997917. Epub 2021 Apr 1.
6
Closed-Loop Control with Unannounced Exercise for Adults with Type 1 Diabetes using the Ensemble Model Predictive Control.
J Process Control. 2019 Aug;80:202-210. doi: 10.1016/j.jprocont.2019.05.017. Epub 2019 Jun 23.
8
Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes.
N Engl J Med. 2019 Oct 31;381(18):1707-1717. doi: 10.1056/NEJMoa1907863. Epub 2019 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验