Suppr超能文献

使用集成模型预测控制对1型糖尿病成人进行无预告运动的闭环控制

Closed-Loop Control with Unannounced Exercise for Adults with Type 1 Diabetes using the Ensemble Model Predictive Control.

作者信息

Garcia-Tirado Jose, Corbett John P, Boiroux Dimitri, Jørgensen John Bagterp, Breton Marc D

机构信息

Center for Diabetes Technology, University of Virginia, Charlottesville, VA.

Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA.

出版信息

J Process Control. 2019 Aug;80:202-210. doi: 10.1016/j.jprocont.2019.05.017. Epub 2019 Jun 23.

Abstract

This paper presents an individualized Ensemble Model Predictive Control (EnMPC) algorithm for blood glucose (BG) stabilization and hypoglycemia prevention in people with type 1 diabetes (T1D) who exercise regularly. The EnMPC formulation can be regarded as a simplified multi-stage MPC allowing for the consideration of scenarios gathered from the patient's recent behavior. The patient's physical activity behavior is characterized by an exercise-specific input signal derived from the deconvolution of the patient's continuous glucose monitor (CGM), accounting for known inputs such as meal, and insulin pump records. The EnMPC controller was tested in a cohort of patients with representative inter-subject and intra-subject variability from the FDA-accepted UVA/Padova simulation platform. Results show a significant improvement on hypoglycemia prevention after 30 min of mild to moderate exercise in comparison to a similarly tuned baseline controller (rMPC); with a reduction in hypoglycemia occurrences (< 70 /), from 3.08% ± 3.55 with rMPC to 0.78% ± 2.04 with EnMPC < 0.05).

摘要

本文提出了一种个性化的集成模型预测控制(EnMPC)算法,用于在经常运动的1型糖尿病(T1D)患者中稳定血糖(BG)并预防低血糖。EnMPC公式可被视为一种简化的多阶段MPC,允许考虑从患者近期行为中收集的情景。患者的身体活动行为通过从患者连续血糖监测仪(CGM)的反卷积中得出的特定运动输入信号来表征,该信号考虑了已知输入,如膳食和胰岛素泵记录。EnMPC控制器在来自FDA认可的UVA/帕多瓦模拟平台的具有代表性的受试者间和受试者内变异性的一组患者中进行了测试。结果表明,与类似调整的基线控制器(rMPC)相比,在轻度至中度运动30分钟后,低血糖预防有显著改善;低血糖发生率(<70 /)从rMPC的3.08%±3.55降至EnMPC的0.78%±2.04(<0.05)。

相似文献

1
Closed-Loop Control with Unannounced Exercise for Adults with Type 1 Diabetes using the Ensemble Model Predictive Control.
J Process Control. 2019 Aug;80:202-210. doi: 10.1016/j.jprocont.2019.05.017. Epub 2019 Jun 23.
2
Diabetes technology and treatments in the paediatric age group.
Int J Clin Pract Suppl. 2011 Feb(170):76-82. doi: 10.1111/j.1742-1241.2010.02582.x.
3
Event-Triggered Model Predictive Control for Embedded Artificial Pancreas Systems.
IEEE Trans Biomed Eng. 2018 Mar;65(3):575-586. doi: 10.1109/TBME.2017.2707344. Epub 2017 May 23.
4
Closed-Loop Control Without Meal Announcement in Type 1 Diabetes.
Diabetes Technol Ther. 2017 Sep;19(9):527-532. doi: 10.1089/dia.2017.0078. Epub 2017 Aug 2.
5
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.
7
Performance of an Artificial Pancreas System for Young Children with Type 1 Diabetes.
Diabetes Technol Ther. 2017 May;19(5):293-298. doi: 10.1089/dia.2016.0424. Epub 2017 Apr 20.
8
Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes.
Diabetes Technol Ther. 2019 May;21(5):265-272. doi: 10.1089/dia.2019.0017. Epub 2019 Mar 29.
9
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26.
10
A Real-Time Continuous Glucose Monitoring-Based Algorithm to Trigger Hypotreatments to Prevent/Mitigate Hypoglycemic Events.
Diabetes Technol Ther. 2019 Nov;21(11):644-655. doi: 10.1089/dia.2019.0139. Epub 2019 Jul 25.

引用本文的文献

1
Metabolic Models, in Silico Trials, and Algorithms.
J Diabetes Sci Technol. 2025 Jul;19(4):895-907. doi: 10.1177/19322968251338300. Epub 2025 Jul 1.
2
Using an Online Disturbance Rejection and Anticipation System to Reduce Hyperglycemia in a Fully Closed-Loop Artificial Pancreas System.
J Diabetes Sci Technol. 2022 Jan;16(1):52-60. doi: 10.1177/19322968211059159. Epub 2021 Dec 3.
3
Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
J Diabetes Sci Technol. 2022 Jan;16(1):19-28. doi: 10.1177/19322968211059149. Epub 2021 Dec 3.
4
Diabetes Technology Meeting 2020.
J Diabetes Sci Technol. 2021 Jul;15(4):916-960. doi: 10.1177/19322968211016480.
5
Artificial Intelligence in Decision Support Systems for Type 1 Diabetes.
Sensors (Basel). 2020 Jun 5;20(11):3214. doi: 10.3390/s20113214.

本文引用的文献

1
Identifiability Analysis of Three Control-Oriented Models for Use in Artificial Pancreas Systems.
J Diabetes Sci Technol. 2018 Sep;12(5):937-952. doi: 10.1177/1932296818788873. Epub 2018 Aug 10.
3
The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day.
J Diabetes Sci Technol. 2018 Mar;12(2):273-281. doi: 10.1177/1932296818757747. Epub 2018 Feb 16.
5
An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions.
J Diabetes Sci Technol. 2017 May;11(3):537-544. doi: 10.1177/1932296816680632. Epub 2016 Dec 1.
7
Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control.
Diabetes Technol Ther. 2017 Jun;19(6):331-339. doi: 10.1089/dia.2016.0399. Epub 2017 May 1.
9
Exercise management in type 1 diabetes: a consensus statement.
Lancet Diabetes Endocrinol. 2017 May;5(5):377-390. doi: 10.1016/S2213-8587(17)30014-1. Epub 2017 Jan 24.
10
Modeling Day-to-Day Variability of Glucose-Insulin Regulation Over 12-Week Home Use of Closed-Loop Insulin Delivery.
IEEE Trans Biomed Eng. 2017 Jun;64(6):1412-1419. doi: 10.1109/TBME.2016.2590498. Epub 2016 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验