一种用于具有未知动态和噪声测量的系统的全局米塔格 - 莱夫勒有界高增益观测器。
A globally Mittag-Leffler bounded high-gain observer for systems with unknown dynamics and noisy measurements.
作者信息
Martínez-Guerra Rafael, Flores-Flores Juan Pablo, Govea-Vargas Arturo
机构信息
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Mexico City, Mexico.
出版信息
ISA Trans. 2022 Sep;128(Pt B):336-345. doi: 10.1016/j.isatra.2021.11.003. Epub 2021 Nov 18.
In this work, we present a globally Mittag-Leffler bounded high-gain observer for fractional order nonlinear systems with unmodeled dynamics and additive measurement noise at the output. Our proposal starts from an alternative representation of the fractional order system, whose output does not depend on the additive measurement noise and in which the original system's output is treated as an additional state variable. This representation allows us two things: 1) to simultaneously estimate the state variables and the uncertain term and 2) to incorporate into the design scheme a fractional integral-type contribution, which is useful to give robustness against the measurement noise and the unmodeled dynamics, as well as to attenuate the noise amplification, typical of any high-gain observer. Through the corresponding mathematical analysis, we prove that the estimation error of the proposed observer is uniformly bounded and converges asymptotically to a globally Mittag-Leffler compact attractive set, this is, the proposed observer is globally Mittag-Leffler bounded. Additionally, we show that under certain conditions, such as an integer derivation order or the absence of measurement noise, the proposed observer exhibits some particular properties. Finally, we consider a continuously stirred biochemical reactor to exemplify our design methodology. The numerical results confirm that the observer is able to accurately estimate the state variables as well as the uncertainty term of the fractional model. In other words, the globally Mittag-Leffler bounded high-gain observer is robust against measurement noise and uncertainties.
在这项工作中,我们针对具有未建模动态特性且输出端存在加性测量噪声的分数阶非线性系统,提出了一种全局米塔格 - 莱夫勒有界高增益观测器。我们的方案始于分数阶系统的一种替代表示形式,其输出不依赖于加性测量噪声,并且将原系统的输出视为一个额外的状态变量。这种表示形式使我们能够:1)同时估计状态变量和不确定项;2)在设计方案中纳入分数积分型贡献,这对于增强对测量噪声和未建模动态特性的鲁棒性以及衰减任何高增益观测器典型的噪声放大很有用。通过相应的数学分析,我们证明了所提出观测器的估计误差是一致有界的,并且渐近收敛到一个全局米塔格 - 莱夫勒紧致吸引集,也就是说,所提出的观测器是全局米塔格 - 莱夫勒有界的。此外,我们表明在某些条件下,例如整数阶导数或不存在测量噪声时,所提出的观测器具有一些特殊性质。最后,我们考虑一个连续搅拌生化反应器来例证我们的设计方法。数值结果证实,该观测器能够准确估计分数阶模型的状态变量以及不确定项。换句话说,全局米塔格 - 莱夫勒有界高增益观测器对测量噪声和不确定性具有鲁棒性。