Department of Mathematics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
Department of Mathematics, Technical University of Sofia, 8800 Sliven, Bulgaria.
Neural Netw. 2017 Dec;96:22-32. doi: 10.1016/j.neunet.2017.08.009. Epub 2017 Sep 8.
In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives.
本文提出了一个具有时变时滞和反应扩散项的分数阶神经网络系统。我们首先通过脉冲控制器为被控节点开发了一种新的 Mittag-Leffler 同步策略。利用分数 Lyapunov 方法给出了充分条件。我们还使用线性控制器研究了两个相同的分数阶脉冲反应扩散神经网络的全局 Mittag-Leffler 同步,这对于整数阶模型来说也是一个悬而未决的问题。由于 Mittag-Leffler 稳定性概念是分数阶系统的指数稳定性概念的推广,因此我们的结果将具有时变时滞和反应扩散项的神经网络系统的指数脉冲控制理论扩展和改进到分数阶情况。分数阶导数允许我们在神经网络中建模长期记忆,因此,本研究为相当复杂的过程提供了一个概念上直接的数学表示。给出了说明性示例以验证所得到结果的有效性。我们表明,通过适当的脉冲控制器,我们可以实现稳定性目标并控制状态的定性行为。使用分数导数扩展了图像加密方案。