Suppr超能文献

铁基电芬顿催化剂对微污染物的强化降解:钴作为介孔通道中的电子调节剂及机理探究

Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight.

作者信息

Chen Xiaoqian, Teng Wei, Fan Jianwei, Chen Yanyan, Ma Qian, Xue Yinghao, Zhang Chuning, Zhang Wei-Xian

机构信息

State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.

State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.

出版信息

J Hazard Mater. 2022 Apr 5;427:127896. doi: 10.1016/j.jhazmat.2021.127896. Epub 2021 Nov 26.

Abstract

Heterogeneous electro-Fenton (hetero-EF) process is an emerging alternative for effective oxidation of recalcitrant micropollutants, but it is hampered by limited hydroxyl radical (•OH) generation and low stability on the iron-based cathodes. Herein, we demonstrate an enhanced hetero-EF performance via modulation of iron electronic structure in an ordered mesoporous carbon (OMC). By tuning the cobalt incorporation, the highly-dispersed iron-cobalt (FeCo) nanoalloys in mesochannels (FeCo@OMC) show a 3-fold increase in •OH yield compared with Fe@OMC, achieving degradation efficiency with 92% of sulfamethazine (SMT) and 99% of rhodamine B (RhB), and the corresponding total organic carbon (TOC) removal with 66% of SMT and 85% of RhB within 2 h in neutral pH, respectively. Experimental results and density functional theory (DFT) calculations demonstrate that iron incorporated with cobalt reduces energy barrier for facile generation of HO and •OH from O through direct electron transfer, along with decreased overpotential. Meanwhile, cobalt doping promotes HO decomposition by accelerated Fe(II)/Fe(III) cycle and Co(II)/Co(III) redox. Furthermore, spatially confined and half-embedded structure endows the nanocatalyst (8 nm) excellent durability within a wide pH value range and good stability in cycle tests. A plausible reaction mechanism and degradation pathway for SMT are proposed. Moreover, the superiority of FeCo@OMC cathode is maintained in simulated wastewater, suggesting an enormous potential in practical wastewater treatment.

摘要

非均相电芬顿(hetero-EF)工艺是一种用于有效氧化难降解微污染物的新兴替代方法,但它受到羟基自由基(•OH)生成受限以及铁基阴极稳定性低的阻碍。在此,我们通过在有序介孔碳(OMC)中调节铁的电子结构来证明增强的非均相电芬顿性能。通过调整钴的掺入量,中孔道中高度分散的铁钴(FeCo)纳米合金(FeCo@OMC)与Fe@OMC相比,•OH产率提高了3倍,实现了对92%的磺胺二甲嘧啶(SMT)和99%的罗丹明B(RhB)的降解效率,以及在中性pH值下2小时内分别对66%的SMT和85%的RhB的相应总有机碳(TOC)去除率。实验结果和密度泛函理论(DFT)计算表明,与钴结合的铁降低了通过直接电子转移从O轻松生成HO和•OH的能垒,同时过电位降低。同时,钴掺杂通过加速Fe(II)/Fe(III)循环和Co(II)/Co(III)氧化还原促进HO分解。此外,空间受限和半嵌入结构赋予纳米催化剂(8纳米)在宽pH值范围内优异的耐久性以及在循环测试中的良好稳定性。提出了SMT合理的反应机理和降解途径。此外,FeCo@OMC阴极在模拟废水中保持其优势,表明在实际废水处理中具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验