Suppr超能文献

心动改变:纤毛在心脏发育和疾病中的新作用。

A change of heart: new roles for cilia in cardiac development and disease.

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.

出版信息

Nat Rev Cardiol. 2022 Apr;19(4):211-227. doi: 10.1038/s41569-021-00635-z. Epub 2021 Dec 3.

Abstract

Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.

摘要

尽管在越来越多的由原发性纤毛病变引起的人类疾病中观察到心脏异常,但纤毛在心脏中的功能仍然是一个未充分探索的领域。长期以来,人们认为纤毛在心脏中的主要功能仅限于胚胎发生过程中的左右轴模式形成。然而,新的发现揭示了纤毛在先天性心脏病、瓣膜发生、心肌纤维化和再生以及机械感觉中的广泛作用。在这篇综述中,我们描述了我们对纤毛功能如何促进心脏左右轴发育的机制的理解的进展,并讨论了最新的发现,这些发现强调了纤毛在心脏发育中的更广泛作用。具体来说,我们研究了不断增加的证据,这些证据将纤毛功能与先天性心脏病的发病机制联系起来。此外,我们还强调了过去 10 年的研究,这些研究表明纤毛功能在常见的心脏瓣膜疾病中的作用,包括二尖瓣脱垂和主动脉瓣疾病,并描述了心脏纤毛在机械感觉中的潜在作用,可能将血流动力学和收缩力与心脏发育和功能的遗传调控联系起来。最后,鉴于心脏成纤维细胞上存在纤毛,我们还探讨了纤毛在纤维化生长中的潜在作用,并总结了心脏纤毛参与心脏再生的证据。

相似文献

1
A change of heart: new roles for cilia in cardiac development and disease.
Nat Rev Cardiol. 2022 Apr;19(4):211-227. doi: 10.1038/s41569-021-00635-z. Epub 2021 Dec 3.
2
Functions of cilia in cardiac development and disease.
Ann Hum Genet. 2024 Jan;88(1):4-26. doi: 10.1111/ahg.12534. Epub 2023 Oct 23.
3
Defects in the Exocyst-Cilia Machinery Cause Bicuspid Aortic Valve Disease and Aortic Stenosis.
Circulation. 2019 Oct 15;140(16):1331-1341. doi: 10.1161/CIRCULATIONAHA.119.038376. Epub 2019 Aug 7.
4
Left-right patterning in congenital heart disease beyond heterotaxy.
Am J Med Genet C Semin Med Genet. 2020 Mar;184(1):90-96. doi: 10.1002/ajmg.c.31768. Epub 2020 Jan 30.
5
Mitral Valve Prolapse Induces Regionalized Myocardial Fibrosis.
J Am Heart Assoc. 2021 Dec 21;10(24):e022332. doi: 10.1161/JAHA.121.022332. Epub 2021 Dec 7.
6
Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14049-14054. doi: 10.1073/pnas.1808341116. Epub 2019 Jun 24.
7
Role of cilia in the pathogenesis of congenital heart disease.
Semin Cell Dev Biol. 2021 Feb;110:2-10. doi: 10.1016/j.semcdb.2020.04.017. Epub 2020 May 14.
8
Primary Cilia and Their Role in Acquired Heart Disease.
Cells. 2022 Mar 11;11(6):960. doi: 10.3390/cells11060960.
10
Fibroblast Primary Cilia Are Required for Cardiac Fibrosis.
Circulation. 2019 May 14;139(20):2342-2357. doi: 10.1161/CIRCULATIONAHA.117.028752.

引用本文的文献

1
Endocardial primary cilia and blood flow regulate EndoMT during endocardial cushion development.
Nat Cardiovasc Res. 2025 Aug 26. doi: 10.1038/s44161-025-00697-z.
2
Ciliary biology intersects autism and congenital heart disease.
Development. 2025 Jun 15;152(12). doi: 10.1242/dev.204295. Epub 2025 Jun 24.
3
The prevalence of laterality defects in patients with congenital heart disease.
J Hum Genet. 2025 Jun 5. doi: 10.1038/s10038-025-01351-z.
5
Recessive genetic contribution to congenital heart disease in 5,424 probands.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2419992122. doi: 10.1073/pnas.2419992122. Epub 2025 Mar 3.
7
A splicing variant in EFCAB7 hinders ciliary transport and disrupts cardiac development.
J Biol Chem. 2025 Mar;301(3):108249. doi: 10.1016/j.jbc.2025.108249. Epub 2025 Jan 31.
8
Canopy elastic turbulence: Insights and analogies to canopy inertial turbulence.
PNAS Nexus. 2024 Dec 23;4(1):pgae571. doi: 10.1093/pnasnexus/pgae571. eCollection 2025 Jan.
9
The molecular mechanisms of cardiac development and related diseases.
Signal Transduct Target Ther. 2024 Dec 23;9(1):368. doi: 10.1038/s41392-024-02069-8.
10
Convergence of autism proteins at the cilium.
bioRxiv. 2025 Jan 14:2024.12.05.626924. doi: 10.1101/2024.12.05.626924.

本文引用的文献

2
The roles and activation of endocardial Notch signaling in heart regeneration.
Cell Regen. 2021 Feb 1;10(1):3. doi: 10.1186/s13619-020-00060-6.
3
Atrioventricular canal defect is the classic congenital heart disease in Bardet-Biedl syndrome.
Ann Hum Genet. 2021 May;85(3-4):101-102. doi: 10.1111/ahg.12413. Epub 2021 Jan 12.
4
Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy.
Hum Mutat. 2020 Dec;41(12):2167-2178. doi: 10.1002/humu.24132. Epub 2020 Nov 10.
5
The molecular structure of mammalian primary cilia revealed by cryo-electron tomography.
Nat Struct Mol Biol. 2020 Dec;27(12):1115-1124. doi: 10.1038/s41594-020-0507-4. Epub 2020 Sep 28.
6
Molecular and cellular basis of left-right asymmetry in vertebrates.
Proc Jpn Acad Ser B Phys Biol Sci. 2020;96(7):273-296. doi: 10.2183/pjab.96.021.
7
Role of Ca transients at the node of the mouse embryo in breaking of left-right symmetry.
Sci Adv. 2020 Jul 22;6(30):eaba1195. doi: 10.1126/sciadv.aba1195. eCollection 2020 Jul.
8
Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis.
Cell Rep. 2020 Jul 21;32(3):107932. doi: 10.1016/j.celrep.2020.107932.
9
Right, left and cilia: How asymmetry is established.
Semin Cell Dev Biol. 2021 Feb;110:11-18. doi: 10.1016/j.semcdb.2020.06.003. Epub 2020 Jun 20.
10
Biomechanical Cues Direct Valvulogenesis.
J Cardiovasc Dev Dis. 2020 May 19;7(2):18. doi: 10.3390/jcdd7020018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验