Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden.
Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Acta Neurochir Suppl. 2022;134:79-89. doi: 10.1007/978-3-030-85292-4_11.
The use of deep learning (DL) is rapidly increasing in clinical neuroscience. The term denotes models with multiple sequential layers of learning algorithms, architecturally similar to neural networks of the brain. We provide examples of DL in analyzing MRI data and discuss potential applications and methodological caveats.Important aspects are data pre-processing, volumetric segmentation, and specific task-performing DL methods, such as CNNs and AEs. Additionally, GAN-expansion and domain mapping are useful DL techniques for generating artificial data and combining several smaller datasets.We present results of DL-based segmentation and accuracy in predicting glioma subtypes based on MRI features. Dice scores range from 0.77 to 0.89. In mixed glioma cohorts, IDH mutation can be predicted with a sensitivity of 0.98 and specificity of 0.97. Results in test cohorts have shown improvements of 5-7% in accuracy, following GAN-expansion of data and domain mapping of smaller datasets.The provided DL examples are promising, although not yet in clinical practice. DL has demonstrated usefulness in data augmentation and for overcoming data variability. DL methods should be further studied, developed, and validated for broader clinical use. Ultimately, DL models can serve as effective decision support systems, and are especially well-suited for time-consuming, detail-focused, and data-ample tasks.
深度学习(DL)在临床神经科学中的应用正在迅速增加。该术语表示具有多个顺序学习算法层的模型,在架构上类似于大脑的神经网络。我们提供了分析 MRI 数据的 DL 示例,并讨论了潜在的应用和方法学注意事项。重要方面包括数据预处理、体积分割以及特定任务执行的 DL 方法,例如 CNN 和 AEs。此外,GAN 扩展和域映射是用于生成人工数据和组合几个较小数据集的有用的 DL 技术。我们展示了基于 DL 的分割和基于 MRI 特征预测胶质瘤亚型的准确性的结果。Dice 分数范围为 0.77 至 0.89。在混合胶质瘤队列中,IDH 突变可以以 0.98 的灵敏度和 0.97 的特异性进行预测。在测试队列中的结果表明,在进行数据的 GAN 扩展和较小数据集的域映射之后,准确性提高了 5-7%。提供的 DL 示例很有前景,但尚未在临床实践中应用。DL 在数据增强和克服数据变异性方面表现出了有用性。应进一步研究、开发和验证 DL 方法,以实现更广泛的临床应用。最终,DL 模型可以作为有效的决策支持系统,尤其适用于耗时、注重细节和数据丰富的任务。