Suppr超能文献

一种用于脑胶质瘤及其亚型分类的新型联邦深度学习方案。

A novel federated deep learning scheme for glioma and its subtype classification.

作者信息

Ali Muhaddisa Barat, Gu Irene Yu-Hua, Berger Mitchel S, Jakola Asgeir Store

机构信息

Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.

出版信息

Front Neurosci. 2023 May 23;17:1181703. doi: 10.3389/fnins.2023.1181703. eCollection 2023.

Abstract

BACKGROUND

Deep learning (DL) has shown promising results in molecular-based classification of glioma subtypes from MR images. DL requires a large number of training data for achieving good generalization performance. Since brain tumor datasets are usually small in size, combination of such datasets from different hospitals are needed. Data privacy issue from hospitals often poses a constraint on such a practice. Federated learning (FL) has gained much attention lately as it trains a central DL model without requiring data sharing from different hospitals.

METHOD

We propose a novel 3D FL scheme for glioma and its molecular subtype classification. In the scheme, a slice-based DL classifier, EtFedDyn, is exploited which is an extension of FedDyn, with the key differences on using focal loss cost function to tackle severe class imbalances in the datasets, and on multi-stream network to exploit MRIs in different modalities. By combining EtFedDyn with domain mapping as the pre-processing and 3D scan-based post-processing, the proposed scheme makes 3D brain scan-based classification on datasets from different dataset owners. To examine whether the FL scheme could replace the central learning (CL) one, we then compare the classification performance between the proposed FL and the corresponding CL schemes. Furthermore, detailed empirical-based analysis were also conducted to exam the effect of using domain mapping, 3D scan-based post-processing, different cost functions and different FL schemes.

RESULTS

Experiments were done on two case studies: classification of glioma subtypes (IDH mutation and wild-type on TCGA and US datasets in case A) and glioma grades (high/low grade glioma HGG and LGG on MICCAI dataset in case B). The proposed FL scheme has obtained good performance on the test sets (85.46%, 75.56%) for IDH subtypes and (89.28%, 90.72%) for glioma LGG/HGG all averaged on five runs. Comparing with the corresponding CL scheme, the drop in test accuracy from the proposed FL scheme is small (-1.17%, -0.83%), indicating its good potential to replace the CL scheme. Furthermore, the empirically tests have shown that an increased classification test accuracy by applying: domain mapping (0.4%, 1.85%) in case A; focal loss function (1.66%, 3.25%) in case A and (1.19%, 1.85%) in case B; 3D post-processing (2.11%, 2.23%) in case A and (1.81%, 2.39%) in case B and EtFedDyn over FedAvg classifier (1.05%, 1.55%) in case A and (1.23%, 1.81%) in case B with fast convergence, which all contributed to the improvement of overall performance in the proposed FL scheme.

CONCLUSION

The proposed FL scheme is shown to be effective in predicting glioma and its subtypes by using MR images from test sets, with great potential of replacing the conventional CL approaches for training deep networks. This could help hospitals to maintain their data privacy, while using a federated trained classifier with nearly similar performance as that from a centrally trained one. Further detailed experiments have shown that different parts in the proposed 3D FL scheme, such as domain mapping (make datasets more uniform) and post-processing (scan-based classification), are essential.

摘要

背景

深度学习(DL)在基于分子的胶质瘤亚型磁共振图像分类中已显示出有前景的结果。深度学习需要大量训练数据以实现良好的泛化性能。由于脑肿瘤数据集通常规模较小,因此需要合并来自不同医院的此类数据集。医院的数据隐私问题常常对这种做法构成限制。联邦学习(FL)近来备受关注,因为它在不需要不同医院共享数据的情况下训练一个中央深度学习模型。

方法

我们提出了一种用于胶质瘤及其分子亚型分类的新型3D联邦学习方案。在该方案中,利用了一种基于切片的深度学习分类器EtFedDyn,它是FedDyn的扩展,关键区别在于使用焦点损失成本函数来解决数据集中严重的类别不平衡问题,以及使用多流网络来利用不同模态的磁共振成像。通过将EtFedDyn与作为预处理的域映射和基于3D扫描的后处理相结合,所提出的方案对来自不同数据集所有者的数据集进行基于3D脑扫描的分类。为了检验联邦学习方案是否可以取代中央学习(CL)方案,我们随后比较了所提出的联邦学习方案与相应的中央学习方案之间的分类性能。此外,还进行了详细的基于实证的分析,以检验使用域映射、基于3D扫描的后处理、不同成本函数和不同联邦学习方案的效果。

结果

在两个案例研究上进行了实验:胶质瘤亚型分类(案例A中TCGA和美国数据集中的异柠檬酸脱氢酶(IDH)突变和野生型)和胶质瘤分级(案例B中MICCAI数据集中的高/低级别胶质瘤HGG和LGG)。所提出的联邦学习方案在测试集上取得了良好性能,IDH亚型的测试集(五次运行平均)为(85.46%,75.56%),胶质瘤LGG/HGG的测试集为(89.28%,90.72%)。与相应的中央学习方案相比,所提出的联邦学习方案在测试准确率上的下降很小(-1.17%,-0.83%),表明其有很好的潜力取代中央学习方案。此外,实证测试表明,通过应用以下方法可提高分类测试准确率:案例A中的域映射(分别提高0.4%,1.85%);案例A中的焦点损失函数(分别提高1.66%,3.25%)和案例B中的焦点损失函数(分别提高1.19%,1.85%);案例A中的3D后处理(分别提高2.11%,2.23%)和案例B中的3D后处理(分别提高1.81%,2.39%);以及EtFedDyn相对于FedAvg分类器(案例A中分别提高1.05%,1.55%,案例B中分别提高1.23%,1.81%),且收敛速度快,这些都有助于提高所提出的联邦学习方案的整体性能。

结论

所提出的联邦学习方案被证明在使用测试集的磁共振图像预测胶质瘤及其亚型方面是有效的,具有很大潜力取代传统的中央学习方法来训练深度网络。这可以帮助医院在使用性能与中央训练的分类器相近的联邦训练分类器的同时,维护其数据隐私。进一步的详细实验表明,所提出的3D联邦学习方案中的不同部分,如域映射(使数据集更均匀)和后处理(基于扫描分类),是至关重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7678/10242007/6c52300e75a5/fnins-17-1181703-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验