Suppr超能文献

全基因组表观遗传关联研究:当前的知识、策略和建议。

Epigenome-wide association studies: current knowledge, strategies and recommendations.

机构信息

Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.

Centre for Information Based Medicine, Hunter Medical Research Institute, Newcastle, Australia.

出版信息

Clin Epigenetics. 2021 Dec 4;13(1):214. doi: 10.1186/s13148-021-01200-8.

Abstract

The aetiology and pathophysiology of complex diseases are driven by the interaction between genetic and environmental factors. The variability in risk and outcomes in these diseases are incompletely explained by genetics or environmental risk factors individually. Therefore, researchers are now exploring the epigenome, a biological interface at which genetics and the environment can interact. There is a growing body of evidence supporting the role of epigenetic mechanisms in complex disease pathophysiology. Epigenome-wide association studies (EWASes) investigate the association between a phenotype and epigenetic variants, most commonly DNA methylation. The decreasing cost of measuring epigenome-wide methylation and the increasing accessibility of bioinformatic pipelines have contributed to the rise in EWASes published in recent years. Here, we review the current literature on these EWASes and provide further recommendations and strategies for successfully conducting them. We have constrained our review to studies using methylation data as this is the most studied epigenetic mechanism; microarray-based data as whole-genome bisulphite sequencing remains prohibitively expensive for most laboratories; and blood-based studies due to the non-invasiveness of peripheral blood collection and availability of archived DNA, as well as the accessibility of publicly available blood-cell-based methylation data. Further, we address multiple novel areas of EWAS analysis that have not been covered in previous reviews: (1) longitudinal study designs, (2) the chip analysis methylation pipeline (ChAMP), (3) differentially methylated region (DMR) identification paradigms, (4) methylation quantitative trait loci (methQTL) analysis, (5) methylation age analysis and (6) identifying cell-specific differential methylation from mixed cell data using statistical deconvolution.

摘要

复杂疾病的病因和发病机制是由遗传和环境因素相互作用驱动的。这些疾病的风险和结果的可变性不能仅用遗传或环境风险因素来完全解释。因此,研究人员现在正在探索表观基因组,这是遗传和环境可以相互作用的生物学界面。越来越多的证据支持表观遗传机制在复杂疾病发病机制中的作用。全基因组关联研究(EWASes)研究表型与表观遗传变异(最常见的是 DNA 甲基化)之间的关联。测量全基因组甲基化的成本降低和生物信息学管道的可及性增加,促成了近年来发表的 EWASes 的增加。在这里,我们回顾了这些 EWASes 的现有文献,并提供了成功进行这些研究的进一步建议和策略。我们的综述仅限于使用甲基化数据的研究,因为这是研究最多的表观遗传机制;基于微阵列的数据,因为全基因组亚硫酸氢盐测序对于大多数实验室来说仍然过于昂贵;以及基于血液的研究,因为外周血采集的非侵入性和存档 DNA 的可用性,以及公开可用的基于血细胞的甲基化数据的可及性。此外,我们解决了以前的综述中未涵盖的多个 EWAS 分析的新领域:(1)纵向研究设计,(2)芯片分析甲基化管道(ChAMP),(3)差异甲基化区域(DMR)鉴定范式,(4)甲基化数量性状基因座(methQTL)分析,(5)甲基化年龄分析以及(6)使用统计去卷积从混合细胞数据中识别细胞特异性差异甲基化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7927/8645110/465f397bf34d/13148_2021_1200_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验