Suppr超能文献

贝叶斯信念网络学习工具整合了河岸带缓冲区对溪流无脊椎动物多尺度的影响。

A Bayesian Belief Network learning tool integrates multi-scale effects of riparian buffers on stream invertebrates.

机构信息

Aquatic Ecology Research Unit, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium.

Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, New Zealand.

出版信息

Sci Total Environ. 2022 Mar 1;810:152146. doi: 10.1016/j.scitotenv.2021.152146. Epub 2021 Dec 2.

Abstract

Riparian forest buffers have multiple benefits for biodiversity and ecosystem services in both freshwater and terrestrial habitats but are rarely implemented in water ecosystem management, partly reflecting the lack of information on the effectiveness of this measure. In this context, social learning is valuable to inform stakeholders of the efficacy of riparian vegetation in mitigating stream degradation. We aim to develop a Bayesian belief network (BBN) model for application as a learning tool to simulate and assess the reach- and segment-scale effects of riparian vegetation properties and land use on instream invertebrates. We surveyed reach-scale riparian conditions, extracted segment-scale riparian and subcatchment land use information from geographic information system data, and collected macroinvertebrate samples from four catchments in Europe (Belgium, Norway, Romania, and Sweden). We modelled the ecological condition based on the Average Score Per Taxon (ASPT) index, a macroinvertebrate-based index widely used in European bioassessment, as a function of different riparian variables using the BBN modelling approach. The results of the model simulations provided insights into the usefulness of riparian vegetation attributes in enhancing the ecological condition, with reach-scale riparian vegetation quality associated with the strongest improvements in ecological status. Specifically, reach-scale buffer vegetation of score 3 (i.e. moderate quality) generally results in the highest probability of a good ASPT score (99-100%). In contrast, a site with a narrow width of riparian trees and a small area of trees with reach-scale buffer vegetation of score 1 (i.e. low quality) predicts a high probability of a bad ASPT score (74%). The strengths of the BBN model are the ease of interpretation, fast simulation, ability to explicitly indicate uncertainty in model outcomes, and interactivity. These merits point to the potential use of the BBN model in workshop activities to stimulate key learning processes that help inform the management of riparian zones.

摘要

河岸林缓冲带对淡水和陆地生境中的生物多样性和生态系统服务有多种益处,但在水生态系统管理中很少实施,部分原因是缺乏关于该措施有效性的信息。在这种情况下,社会学习对于让利益相关者了解河岸植被在减轻溪流退化方面的功效很有价值。我们旨在开发贝叶斯信念网络(BBN)模型,作为一种学习工具,用于模拟和评估河岸植被特性和土地利用对溪流无脊椎动物的河道和流域尺度的影响。我们调查了河道尺度的河岸条件,从地理信息系统数据中提取了流域尺度的河岸和流域土地利用信息,并从欧洲的四个流域(比利时、挪威、罗马尼亚和瑞典)收集了大型无脊椎动物样本。我们根据平均分类得分指数(ASPT)模型对生态条件进行建模,该指数是欧洲生物评估中广泛使用的基于大型无脊椎动物的指数,作为 BBN 建模方法的一种功能,用于不同的河岸变量。模型模拟结果深入了解了河岸植被属性在增强生态条件方面的有用性,与河岸植被质量相关的河道尺度与生态状况的最强改善有关。具体而言,得分 3 的河道尺度缓冲植被(即中等质量)通常会导致良好 ASPT 得分的概率最高(99-100%)。相比之下,一个河岸树木狭窄、具有河道尺度缓冲植被的树木面积小、得分 1 的河岸树木(即低质量)的地点预测出 ASPT 得分差的概率很高(74%)。BBN 模型的优势在于易于解释、快速模拟、能够明确表示模型结果中的不确定性以及交互性。这些优点表明,BBN 模型有可能在研讨会活动中得到应用,以激发有助于河岸带管理的关键学习过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验