Suppr超能文献

双修饰纳米粒克服口服胰岛素传递的顺序吸收障碍。

Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery.

机构信息

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.

出版信息

J Control Release. 2022 Feb;342:1-13. doi: 10.1016/j.jconrel.2021.11.045. Epub 2021 Dec 2.

Abstract

The efficacy of oral insulin drug delivery is seriously hampered by multiple gastrointestinal barriers, especially transepithelial barriers, including apical endocytosis, lysosomal degradation, cytosolic diffusion and basolateral exocytosis. In this study, a functional nanoparticle (PG-FAPEP) with dual-modification was constructed to sequentially address these important absorption obstacles for improved oral insulin delivery. The dual surface decorations folate and charge-convertible tripeptide endowed PG-FAPEP with the ability to target the apical and basolateral sides of enterocytes, respectively. After fast diffusion across the mucus layer, PG-FAPEP could be efficiently internalized into epithelial cells via a folate receptor-mediated pathway and subsequently became positively charged in acidic lysosomes due to the surface tripeptide, triggering the proton sponge effect to escape lysosomes. When entering the cytosolic medium, PG-FAPEP was converted to neutral charge again, attenuating intracellular adhesion, and gained improved motility toward the basolateral side. Finally, the tripeptide helped PG-FAPEP recognize the proton-coupled oligopeptide transporter (PHT1) in the basolateral membrane, boosting intact exocytosis across intestinal epithelial cells. The in vivo studies further verified that PG-FAPEP could traverse the intestinal epithelium by folate receptor-mediated endocytosis, lysosomal escape, and PHT1-mediated exocytosis, exhibiting a high oral insulin bioavailability of 14.3% and a prolonged hypoglycemic effect. This formulation addresses multiple absorption barriers on demand with a simple dual-modification strategy. Therefore, these features allow PG-FAPEP to unleash the potential of oral macromolecule delivery.

摘要

口服胰岛素药物传递的功效受到多种胃肠道屏障的严重阻碍,特别是跨上皮屏障,包括顶端内吞作用、溶酶体降解、细胞质扩散和基底外侧胞吐作用。在这项研究中,构建了一种具有双重修饰的功能性纳米颗粒(PG-FAPEP),以依次解决这些重要的吸收障碍,从而改善口服胰岛素传递。叶酸和可转换电荷的三肽的双重表面修饰使 PG-FAPEP 具有靶向肠上皮细胞顶端和基底外侧的能力。在快速扩散穿过黏液层后,PG-FAPEP 可以通过叶酸受体介导的途径有效地被内化到上皮细胞中,并且由于表面三肽而在酸性溶酶体中变为正电荷,引发质子海绵效应以逃离溶酶体。进入细胞质介质后,PG-FAPEP 再次变为中性电荷,减弱细胞内黏附,并获得向基底外侧的更好的迁移能力。最后,三肽帮助 PG-FAPEP 识别基底外侧膜中的质子偶联寡肽转运体(PHT1),促进完整的胰岛素胞吐作用穿过肠上皮细胞。体内研究进一步证实,PG-FAPEP 可以通过叶酸受体介导的内吞作用、溶酶体逃逸和 PHT1 介导的胞吐作用穿过肠上皮细胞,表现出 14.3%的高口服胰岛素生物利用度和延长的降血糖作用。这种配方通过简单的双重修饰策略按需解决多种吸收障碍。因此,这些特性使 PG-FAPEP 能够释放口服大分子传递的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验