Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India.
Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India.
J Mol Graph Model. 2022 Mar;111:108087. doi: 10.1016/j.jmgm.2021.108087. Epub 2021 Nov 26.
Ribosome biogenesis GTPase A (RbgA) is involved in the late steps of the 50S ribosomal subunit maturation by binding into the 45S pre-ribosomal subunit. The association of RbgA to the 45S intermediate subunit depends on its bound nucleotide (GTP/GDP), probably because of the conformational shifts that occur between the GTP and GDP bound states. However, the available crystal structures of Staphylococcus aureus RbgA (SaRbgA) do not show any significant variations between different nucleotide bound states. Therefore, conformational exploration of SaRbgA in different nucleotide bound states was carried out using all-atom molecular dynamics (MD) simulations. Exploration of conformational distribution using cluster analysis and principal component analysis (PCA) revealed that GDP and pppGpp bound systems exhibit a larger distribution. This is majorly due to the fluctuations of the C-terminal tail (C-tail) as a result of the unwinding of α-helical secondary conformations into loop conformations which are observed from RMSF and DSSP analyses. Further investigation of the network of interactions revealed that the GTP and GMPPNP bound systems hold the C-tail in an α-helical form through stronger interactions between the active-site and C-tail. We also find that the presence of Mg positions Sw-I loop away from the bound nucleotide and stabilizes the active-site water molecules. This seems to assist SaRbgA GTPase activity. In addition, mutations at the C-terminal and Sw-II conserved residues exhibit a larger conformational distribution majorly due to the C-tail fluctuations suggesting that the C-tail of SaRbgA probably interacts with the rRNA or rprotein in the process of ribosome biogenesis.
核糖体生物发生 GTP 酶 A(RbgA)通过与 45S 前核糖体亚基结合参与 50S 核糖体亚基成熟的后期步骤。RbgA 与 45S 中间亚基的结合取决于其结合的核苷酸(GTP/GDP),可能是因为 GTP 和 GDP 结合状态之间发生的构象转变。然而,金黄色葡萄球菌 RbgA(SaRbgA)的现有晶体结构并未显示不同核苷酸结合状态之间存在任何显着差异。因此,使用全原子分子动力学(MD)模拟对不同核苷酸结合状态下的 SaRbgA 构象进行了探索。使用聚类分析和主成分分析(PCA)对构象分布进行探索,结果表明 GDP 和 pppGpp 结合系统的分布更大。这主要是由于 C 末端尾巴(C-tail)的波动,这是由于α-螺旋二级构象展开成环构象所致,从 RMSF 和 DSSP 分析中可以观察到。对相互作用网络的进一步研究表明,GTP 和 GMPPNP 结合系统通过活性位点和 C 末端之间更强的相互作用将 C 末端保持在α-螺旋形式。我们还发现,Mg 的存在将 Sw-I 环置于远离结合核苷酸的位置,并稳定活性位点的水分子。这似乎有助于 SaRbgA GTPase 活性。此外,C 末端和 Sw-II 保守残基的突变表现出更大的构象分布,主要是由于 C 末端尾巴的波动,这表明 SaRbgA 的 C 末端尾巴可能在核糖体生物发生过程中与 rRNA 或 rprotein 相互作用。