Suppr超能文献

一种用于优化卵巢刺激和体外受精过程中工作流程的人工智能平台:流程改进和基于结果的预测。

An artificial intelligence platform to optimize workflow during ovarian stimulation and IVF: process improvement and outcome-based predictions.

作者信息

Letterie Gerard, MacDonald Andrew, Shi Zhan

机构信息

Seattle Reproductive Medicine.

Quick Step Analytics LLC.

出版信息

Reprod Biomed Online. 2022 Feb;44(2):254-260. doi: 10.1016/j.rbmo.2021.10.006. Epub 2021 Oct 20.

Abstract

RESEARCH QUESTION

Can workflow during IVF be facilitated by artificial intelligence to limit monitoring during ovarian stimulation to a single day and enable level-loading of retrievals?

DESIGN

The dataset consisted of 1591 autologous cycles in unique patients with complete data including age, FSH, oestradiol and anti-Müllerian concentrations, follicle counts and body mass index. Observations during ovarian stimulation included oestradiol concentrations and follicle diameters. An algorithm was designed to identify the single best day for monitoring and predict trigger day options and total number of oocytes retrieved.

RESULTS

The mean error to predict the single best day for monitoring was 1.355 days. After identifying the single best day for evaluation, the algorithm identified the trigger date and range of three oocyte retrieval days specified by the earliest and the latest day on which the number of oocytes retrieved was minimally changed with a variance of 0-3 oocytes. Accuracy for prediction of total number of oocytes with baseline testing alone or in combination with data on the day of observation was 0.76 and 0.80, respectively. The sensitivities for estimating the total number and number of mature oocytes based solely on pre-IVF profiles in group I (0-10) were 0.76 and 0.78, and in group II (>10) 0.76 and 0.81, respectively.

CONCLUSIONS

A first-iteration algorithm is described designed to improve workflow, minimize visits and level-load embryology work. This algorithm enables decisions at three interrelated nodal points for IVF workflow management to include monitoring on the single best day, assign trigger days to enable a range of 3 days for level-loading and estimate oocyte number.

摘要

研究问题

人工智能能否优化体外受精(IVF)流程,将卵巢刺激监测限制在一天,并实现取卵的均衡安排?

设计

数据集包含1591例自体周期的独特患者的完整数据,包括年龄、促卵泡激素(FSH)、雌二醇和抗苗勒管激素浓度、卵泡计数和体重指数。卵巢刺激期间的观察指标包括雌二醇浓度和卵泡直径。设计了一种算法,以确定监测的最佳单日,并预测触发日选项和取卵总数。

结果

预测监测最佳单日的平均误差为1.355天。确定评估的最佳单日之后,该算法确定了触发日期以及三个取卵日的范围,最早和最晚日的取卵数变化最小,方差为0 - 3个卵母细胞。仅通过基线测试或结合观察日数据预测卵母细胞总数的准确率分别为0.76和0.80。在第一组(0 - 10个)中,仅基于IVF前资料估计成熟卵母细胞总数和数量的敏感度分别为0.76和0.78,在第二组(>10个)中分别为0.76和0.81。

结论

描述了一种第一代算法,旨在改善体外受精流程,减少就诊次数并均衡胚胎学工作。该算法能够在IVF流程管理的三个相关节点做出决策,包括在最佳单日进行监测、指定触发日以实现3天的均衡取卵范围以及估计卵母细胞数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验