Suppr超能文献

非交换几何中的不得要领之处。

Missing the point in noncommutative geometry.

作者信息

Huggett Nick, Lizzi Fedele, Menon Tushar

机构信息

Department of Philosophy, University of Illinois at Chicago, Chicago, IL USA.

Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Napoli, Italy.

出版信息

Synthese. 2021;199(1-2):4695-4728. doi: 10.1007/s11229-020-02998-1. Epub 2021 Jan 18.

Abstract

Noncommutative geometries generalize standard smooth geometries, parametrizing the noncommutativity of dimensions with a fundamental quantity with the dimensions of area. The question arises then of whether the concept of a region smaller than the scale-and ultimately the concept of a point-makes sense in such a theory. We argue that it does not, in two interrelated ways. In the context of Connes' spectral triple approach, we show that arbitrarily small regions are not definable in the formal sense. While in the scalar field Moyal-Weyl approach, we show that they cannot be given an operational definition. We conclude that points do not exist in such geometries. We therefore investigate (a) the metaphysics of such a geometry, and (b) how the appearance of smooth manifold might be recovered as an approximation to a fundamental noncommutative geometry.

摘要

非交换几何将标准的光滑几何进行了推广,用一个具有面积维度的基本量来参数化维度的非交换性。那么就出现了这样一个问题:在这样一种理论中,小于该尺度的区域概念——最终是点的概念——是否有意义。我们认为它没有意义,有两种相互关联的方式。在康恩斯的谱三元组方法的背景下,我们表明,从形式意义上讲,任意小的区域是不可定义的。而在标量场的莫亚尔 - 外尔方法中,我们表明它们无法给出一个操作定义。我们得出结论,在这样的几何中不存在点。因此,我们研究(a)这种几何的形而上学,以及(b)光滑流形的表象如何作为对基本非交换几何的一种近似而被恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75dc/8604559/b7a0148b8f2f/11229_2020_2998_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验