Suppr超能文献

最小增强现实:用于制造中增强现实工作指令创作的视觉资产优化。

Minimal AR: visual asset optimization for the authoring of augmented reality work instructions in manufacturing.

作者信息

Laviola Enricoandrea, Gattullo Michele, Manghisi Vito Modesto, Fiorentino Michele, Uva Antonio Emmanuele

机构信息

Department of Mechanics, Mathematics, and Management, Polytechnic Institute of Bari, via Orabona, 4, 70125 Bari, Italy.

出版信息

Int J Adv Manuf Technol. 2022;119(3-4):1769-1784. doi: 10.1007/s00170-021-08449-6. Epub 2021 Nov 30.

Abstract

UNLABELLED

This work investigates the possibility of using a novel "minimal AR" authoring approach to optimize the visual assets used in augmented reality (AR) interfaces to convey work instructions in manufacturing. In the literature, there are no widely supported guidelines for the optimal choice of visual assets (e.g., CAD models, drawings, and videos). Therefore, to avoid the risk of having AR technical documentation based only on the author's preference, our work proposes a novel authoring approach that enforces the minimal amount of information to accomplish a task. Minimal AR was tested through a simulated AR LEGO-based assembly task. The performance (completion time, mental workload, errors) of 40 users was evaluated with 4 combinations of visual assets in 4 tasks with an increasing amount of information needed. The main result is that visual assets with an excess of information do not significantly increase performance. Therefore, the location of a specified object should be "minimally" authored by an auxiliary model (e.g., a circle and an arrow). For identifying an object within a couple, color coding is preferred to using additional visual assets. If more than two objects must be identified, a drawing visual asset is also needed. Only when the orientation of a selected object must be conveyed, animated product models are required. These insights could be helpful for an optimal design of AR work instructions in a wide range of industrial fields.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s00170-021-08449-6.

摘要

未标注

本研究探讨了使用一种新颖的“最小化增强现实(AR)”创作方法来优化增强现实(AR)界面中用于传达制造工作指令的视觉资产的可能性。在文献中,对于视觉资产(如CAD模型、图纸和视频)的最佳选择,没有广泛支持的指导原则。因此,为避免仅基于作者偏好生成AR技术文档的风险,我们的研究提出了一种新颖的创作方法,该方法强制使用完成任务所需的最少信息量。通过基于乐高积木的模拟AR装配任务对最小化AR进行了测试。在4个信息量逐渐增加的任务中,使用4种视觉资产组合对40名用户的表现(完成时间、心理工作量、错误情况)进行了评估。主要结果是,信息量过多的视觉资产不会显著提高表现。因此,指定物体的位置应由辅助模型(如圆圈和箭头)“最小化”呈现。对于在一对物体中识别一个物体,颜色编码比使用额外的视觉资产更可取。如果必须识别两个以上的物体,则还需要绘图视觉资产。只有当必须传达所选物体的方向时,才需要动画产品模型。这些见解可能有助于在广泛的工业领域中对AR工作指令进行优化设计。

补充信息

在线版本包含可在10.1007/s00170-021-08449-6获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d917/8629731/44b961a42023/170_2021_8449_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验