Suppr超能文献

避免绝对量化陷阱:一种新型预测标志物,用于预测非小细胞肺癌抗 PD-1 免疫治疗的临床获益。

Avoiding Absolute Quantification Trap: A Novel Predictive Signature of Clinical Benefit to Anti-PD-1 Immunotherapy in Non-Small Cell Lung Cancer.

机构信息

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Front Immunol. 2021 Nov 19;12:782106. doi: 10.3389/fimmu.2021.782106. eCollection 2021.

Abstract

Immunotherapy has been focused on by many oncologists and researchers. While, due to technical biases of absolute quantification, few traditional biomarkers for anti-PD-1 immunotherapy have been applied in regular clinical practice of non-small cell lung cancer (NSCLC). Therefore, there is an urgent and unmet need for a feasible tool-immune to data source bias-for identifying patients who might benefit from ICIs in clinical practice. Using the strategy based on the relative ranking of gene expression levels, we herein proposed the novel BRGP index (BRGPI): four BRGPs significantly related with progression-free survival of NSCLC patients treated with anti-PD-1 immunotherapy in the multicohort analysis. Moreover, stratification and multivariate Cox regression analyses demonstrated that BRGPI was an independent prognostic factor. Notably, compared to PD-L1, BRGPI exerted the best predictive ability. Further analysis showed that the patients in the BRGPI-low and PD-L1-high subgroup derived more clinical benefits from anti-PD-1 immunotherapy. In conclusion, the prospect of applying the BRGPI to real clinical practice is promising owing to its powerful and reliable predictive value.

摘要

免疫疗法一直是许多肿瘤学家和研究人员关注的焦点。然而,由于绝对定量的技术偏差,很少有传统的抗 PD-1 免疫治疗生物标志物被应用于非小细胞肺癌(NSCLC)的常规临床实践中。因此,迫切需要一种可行的工具——免疫数据来源偏差——来识别可能从免疫检查点抑制剂(ICIs)治疗中获益的患者。我们在此提出了一种新的 BRGP 指数(BRGPI):基于基因表达水平相对排序的策略,该指数由四个与抗 PD-1 免疫治疗的 NSCLC 患者无进展生存期显著相关的 BRGP 组成。此外,分层和多变量 Cox 回归分析表明 BRGPI 是一个独立的预后因素。值得注意的是,与 PD-L1 相比,BRGPI 具有最佳的预测能力。进一步的分析表明,BRGPI 低和 PD-L1 高亚组的患者从抗 PD-1 免疫治疗中获得了更多的临床获益。总之,由于其强大而可靠的预测价值,BRGPI 有望应用于实际的临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46f1/8640493/4640df3a4aaf/fimmu-12-782106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验