Suppr超能文献

开发和验证基因组突变特征以预测非鳞状 NSCLC 对 PD-1 抑制剂的反应:一项多队列研究。

Development and validation of a genomic mutation signature to predict response to PD-1 inhibitors in non-squamous NSCLC: a multicohort study.

机构信息

Department of Radiation Oncology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China.

Hepatology Unit and Department of Infectious Diseases, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China.

出版信息

J Immunother Cancer. 2020 Jun;8(1). doi: 10.1136/jitc-2019-000381.

Abstract

BACKGROUND

Genetic variations of some driver genes in non-small cell lung cancer (NSCLC) had shown potential impact on immune microenvironment and associated with response or resistance to programmed cell death protein 1 (PD-1) blockade immunotherapy. We therefore undertook an exploratory analysis to develop a genomic mutation signature (GMS) and predict the response to anti-PD-(L)1 therapy.

METHODS

In this multicohort analysis, 316 patients with non-squamous NSCLC treated with anti-PD-(L)1 from three independent cohorts were included in our study. Tumor samples from the patients were molecularly profiled by MSK-IMPACT or whole exome sequencing. We developed a risk model named GMS based on the MSK training cohort (n=123). The predictive model was first validated in the separate internal MSK cohort (n=82) and then validated in an external cohort containing 111 patients from previously published clinical trials.

RESULTS

A GMS risk model consisting of eight genes (, , , , , , , and ) was generated to classify patients into high and low GMS groups in the training cohort. Patients with high GMS in the training cohort had longer progression-free survival (hazard ratio (HR) 0.41, 0.28-0.61, p0.0001) and overall survival (HR 0.53, 0.32-0.89, p0.0275) compared with low GMS. We noted equivalent findings in the internal validation cohort and in the external validation cohort. The GMS was demonstrated as an independent predictive factor for anti-PD-(L)1 therapy comparing with tumor mutational burden. Meanwhile, GMS showed undifferentiated predictive value in patients with different clinicopathological features. Notably, both GMS and PD-L1 were independent predictors and demonstrated poorly correlated; inclusion of PD-L1 with GMS further improved the predictive capacity for PD-1 blockade immunotherapy.

CONCLUSIONS

Our study highlights the potential predictive value of GMS for immunotherapeutic benefit in non-squamous NSCLC. Besides, the combination of GMS and PD-L1 may serve as an optimal partner in guiding treatment decisions for anti-PD-(L)1 based therapy.

摘要

背景

非小细胞肺癌(NSCLC)中一些驱动基因的遗传变异已显示出对免疫微环境的潜在影响,并与程序性细胞死亡蛋白 1(PD-1)阻断免疫治疗的反应或耐药性相关。因此,我们进行了一项探索性分析,以开发基因组突变特征(GMS)并预测对抗 PD-(L)1 治疗的反应。

方法

在这项多队列分析中,我们纳入了来自三个独立队列的 316 名接受抗 PD-(L)1 治疗的非鳞状 NSCLC 患者。通过 MSK-IMPACT 或全外显子组测序对患者的肿瘤样本进行分子分析。我们基于 MSK 训练队列(n=123)开发了一个名为 GMS 的风险模型。该预测模型首先在单独的内部 MSK 队列(n=82)中进行验证,然后在包含来自先前发表的临床试验的 111 名患者的外部队列中进行验证。

结果

我们生成了一个包含八个基因(,,,,,,, 和 )的 GMS 风险模型,用于在训练队列中将患者分为高和低 GMS 组。在训练队列中,GMS 较高的患者无进展生存期(HR 0.41,0.28-0.61,p0.0001)和总生存期(HR 0.53,0.32-0.89,p0.0275)均长于 GMS 较低的患者。我们在内部验证队列和外部验证队列中也观察到了等效的发现。与肿瘤突变负担相比,GMS 被证明是抗 PD-(L)1 治疗的独立预测因素。同时,GMS 在具有不同临床病理特征的患者中表现出无差异的预测价值。值得注意的是,GMS 和 PD-L1 均为独立预测因子,且相关性较差;将 PD-L1 与 GMS 联合可进一步提高 PD-1 阻断免疫治疗的预测能力。

结论

我们的研究强调了 GMS 对非鳞状 NSCLC 免疫治疗获益的潜在预测价值。此外,GMS 和 PD-L1 的联合可能成为指导基于抗 PD-(L)1 治疗的治疗决策的最佳伙伴。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd44/7328897/82e315649425/jitc-2019-000381f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验