Suppr超能文献

使用图像分割和深度学习方法对肉鸡脚垫皮炎进行客观评分:基于摄像头的评分系统。

Objective scoring of footpad dermatitis in broiler chickens using image segmentation and a deep learning approach: camera-based scoring system.

机构信息

Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom Thailand.

出版信息

Br Poult Sci. 2022 Aug;63(4):427-433. doi: 10.1080/00071668.2021.2013439. Epub 2022 Jan 17.

Abstract
  1. Footpad dermatitis (FPD) can be used as an important indicator of animal welfare and for economic evaluation; however, human scoring is subjective, biased and labour intensive. This paper proposes a novel deep learning approach that can automatically determine the severity of FPD based on images of chicken's feet.2. This approach first determined the areas of the FPD lesion, normal parts of each foot and the background, using a deep segmentation model. The proportion of the FPD for the chicken's two feet was calculated by dividing the number of FPD pixels by the number of feet pixels. The proportion was then categorised using a five-point score for FPD. The approach was evaluated from 244 images of the left and right footpads using five-fold cross-validation. These images were collected at a commercial slaughter plant and scored by trained observers.3. The result showed that this approach achieved an overall accuracy and a macro F1-score of 0.82. The per-class F1-scores from all FPD scores (scores 0 to 4) were similar (0.85, 0.80, 0,80, 0,80, and 0.87, respectively), which demonstrated that this approach performed equally well for all classes of scores.4. The results suggested that image segmentation and a deep learning approach can be used to automate the process of scoring FPD based on chicken foot images, which can help to minimise the subjective bias inherent in manual scoring.
摘要
  1. 脚垫性皮炎(Footpad dermatitis,FPD)可作为动物福利的重要指标,用于经济评估;然而,人工评分具有主观性、偏差性且劳动强度大。本文提出了一种新的深度学习方法,可基于鸡脚图像自动确定 FPD 的严重程度。

  2. 该方法首先使用深度分割模型确定 FPD 病变、每只脚的正常部位和背景区域。通过将 FPD 像素数除以脚部像素数来计算鸡双脚的 FPD 比例。然后,使用五点 FPD 评分对比例进行分类。该方法通过五折交叉验证,对来自商业屠宰厂的 244 张左右脚图像进行了评估。这些图像由受过训练的观察者进行了评分。

  3. 结果表明,该方法的总体准确率和宏 F1 得分为 0.82。所有 FPD 评分(0 至 4 分)的类别 F1 得分相似(分别为 0.85、0.80、0.80、0.80、0.80 和 0.87),这表明该方法对所有评分类别均具有同等良好的性能。

  4. 结果表明,图像分割和深度学习方法可用于根据鸡脚图像自动进行 FPD 评分,有助于减少人工评分固有的主观性偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验