Karmakar Keshab, Sarkar Prakash, Sultana Jenifar, Kurra Narendra, Rao K D M
School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, Sangareddy, Telangana, India.
ACS Appl Mater Interfaces. 2021 Dec 15;13(49):59104-59114. doi: 10.1021/acsami.1c18471. Epub 2021 Dec 6.
Two-dimensional (2D) transition-metal carbides (MXenes) are emerging as promising materials for a wide range of applications owing to their intriguing electrical, optical, and optoelectronic properties. However, the modulation of metallic TiCT MXene electronic properties is the key challenge to fabricate functional nanoelectronic devices. Here, we demonstrate a solution-processable route to fabricate TiCT MXene/CuI nanoparticle heterointerfaces by employing a layer-by-layer assembly process. The charge transfer at the heterointerfacial assembly is monitored qualitatively from the quenched photoluminescence emission of CuI. The stable electrical conductivity and consistent Raman spectra of the 3-LBL assembly (three sequential stacks of CuI/MXene) signify the oxidation stability of TiCT thin films even after exposure to the ambient environment for 2 months. Furthermore, the 3-LBL assembly exhibited a three-dimensional (3D) variable-range hopping-based electrical conduction in the temperature range 2 ≤ < 100 K, contrary to the weak localized transport phenomenon in TiCT MXene. The difference in charge transport mechanism is supported by distinct magnetoresistance (MR) of the TiCT MXene (negative MR, -0.4%) and 3-LBL assembly (positive MR, 1.6%). Therefore, the modulated electrical transport and superior oxidation stability of the TiCT MXene in the 3-LBL assembly have the potential to develop next-generation optoelectronic and memory devices.
二维(2D)过渡金属碳化物(MXenes)因其引人入胜的电学、光学和光电特性,正成为适用于广泛应用的有前景的材料。然而,调节金属TiCT MXene的电子特性是制造功能性纳米电子器件的关键挑战。在此,我们展示了一种通过逐层组装工艺制备TiCT MXene/CuI纳米颗粒异质界面的可溶液加工路线。通过CuI猝灭的光致发光发射定性监测异质界面组装处的电荷转移。3-LBL组装体(CuI/MXene的三个连续堆叠)稳定的电导率和一致的拉曼光谱表明,即使在暴露于环境中2个月后,TiCT薄膜仍具有氧化稳定性。此外,与TiCT MXene中的弱局域输运现象相反,3-LBL组装体在2≤T<100 K的温度范围内表现出基于三维(3D)可变范围跳跃的导电。TiCT MXene(负磁阻,-0.4%)和3-LBL组装体(正磁阻,1.6%)不同的磁阻(MR)支持了电荷传输机制的差异。因此,3-LBL组装体中TiCT MXene的调制电输运和优异的氧化稳定性有潜力开发下一代光电和存储器件。