Tomat Elisa, Curtis Clayton J
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States.
Acc Chem Res. 2021 Dec 21;54(24):4584-4594. doi: 10.1021/acs.accounts.1c00613. Epub 2021 Dec 6.
Redox-active ligands in coordination chemistry not only modulate the reactivity of the bound metal center but also serve as electron reservoirs to store redox equivalents. Among many applications in contemporary chemistry, the scope of redox-active ligands in biology is exemplified by the porphyrin radicals in the catalytic cycles of multiple heme enzymes (e.g., cytochrome P450, catalase) and the chlorophyll radicals in photosynthetic systems. This Account reviews the discovery of two redox-active ligands inspired by oligopyrrolic fragments found in biological settings as products of heme metabolism.Linear oligopyrroles, in which pyrrole heterocycles are linked by methylene or methine bridges, are ubiquitous in nature as part of the complex, multistep biosynthesis and degradation of hemes and chlorophylls. Bile pigments, such as biliverdin and bilirubin, are common and well-studied tetrapyrroles with characteristic pyrrolin-2-one rings at both terminal positions. The coordination chemistry of these open-chain pigments is less developed than that of porphyrins and other macrocyclic oligopyrroles; nevertheless, complexes of biliverdin and its synthetic analogs have been reported, along with fluorescent zinc complexes of phytobilins employed as bioanalytical tools. Notably, linear conjugated tetrapyrroles inherit from porphyrins the ability to stabilize unpaired electrons within their π system. The isolated complexes, however, present helical structures and generally limited stability.Smaller , which feature three or two pyrrole rings and the characteristic oxidized termini, have been known for several decades following their initial isolation as urinary pigments and heme metabolites. Although their coordination chemistry has remained largely unexplored, these compounds are structurally similar to the well-established tripyrrin and dipyrrin ligands employed in a broad variety of metal complexes. In this context, our study of the coordination chemistry of and was motivated by the potential to retain on these compact, versatile platforms the reversible ligand-based redox chemistry of larger tetrapyrrolic systems.The tripyrrindione ligand coordinates several divalent transition metals (i.e., Pd(II), Ni(II) Cu(II), Zn(II)) to form neutral complexes in which an unpaired electron is delocalized over the conjugated π system. These compounds, which are stable at room temperature and exposed to air, undergo reversible one-electron processes to access different redox states of the ligand system without affecting the oxidation state and coordination geometry of the metal center. We also characterized ligand-based radicals on the dipyrrindione platform in both homoleptic and heteroleptic complexes. In addition, this study documented noncovalent interactions (e.g., interligand hydrogen bonds with the pyrrolinone carbonyls, π-stacking of ligand-centered radicals) as important aspects of this coordination chemistry. Furthermore, the fluorescence of the zinc-bound tripyrrindione radical and the redox-switchable emission of a dipyrrindione BODIPY-type fluorophore showcased the potential interplay of redox chemistry and luminescence in these compounds. Supported by computational analyses, the portfolio of properties revealed by this investigation takes the tripyrrindione and dipyrrindione motifs of heme metabolites to the field of redox-active ligands, where they are positioned to offer new opportunities for catalysis, sensing, supramolecular systems, and functional materials.
配位化学中的氧化还原活性配体不仅能调节所配位金属中心的反应活性,还可作为电子库来储存氧化还原当量。在当代化学的众多应用中,氧化还原活性配体在生物学中的应用范围可通过多种血红素酶(如细胞色素P450、过氧化氢酶)催化循环中的卟啉自由基以及光合系统中的叶绿素自由基得以体现。本综述介绍了受生物环境中作为血红素代谢产物的寡吡咯片段启发而发现的两种氧化还原活性配体。
线性寡吡咯中,吡咯杂环通过亚甲基或次甲基桥相连,作为血红素和叶绿素复杂多步生物合成及降解的一部分,在自然界中普遍存在。胆汁色素,如胆绿素和胆红素,是常见且研究充分的四吡咯,在两个末端位置都有特征性的吡咯啉 - 2 - 酮环。这些开链色素的配位化学发展程度低于卟啉和其他大环寡吡咯;然而,已报道了胆绿素及其合成类似物的配合物,以及用作生物分析工具的植物胆素荧光锌配合物。值得注意的是,线性共轭四吡咯从卟啉继承了在其π体系内稳定未成对电子的能力。然而,分离出的配合物呈现螺旋结构且稳定性通常有限。
较小的含有三个或两个吡咯环以及特征性氧化末端的化合物,自最初作为尿色素和血红素代谢产物被分离出来后,已经被认识了几十年。尽管它们的配位化学在很大程度上仍未被探索,但这些化合物在结构上与广泛用于各种金属配合物的已确立的三吡咯和二吡咯配体相似。在此背景下,我们对和的配位化学研究的动机是有可能在这些紧凑、通用的平台上保留较大四吡咯体系基于配体的可逆氧化还原化学。
三吡咯二酮配体与几种二价过渡金属(即Pd(II)、Ni(II)、Cu(II)、Zn(II))配位形成中性配合物,其中一个未成对电子在共轭π体系中离域。这些在室温下且暴露于空气中稳定的化合物经历可逆的单电子过程,以进入配体体系的不同氧化还原状态,而不影响金属中心的氧化态和配位几何结构。我们还在同配和异配配合物中对二吡咯二酮平台上基于配体的自由基进行了表征。此外,本研究记录了非共价相互作用(如与吡咯啉酮羰基的配体间氢键、以配体为中心的自由基的π堆积)作为这种配位化学的重要方面。此外,锌结合的三吡咯二酮自由基的荧光以及二吡咯二酮BODIPY型荧光团的氧化还原可切换发射展示了这些化合物中氧化还原化学与发光的潜在相互作用。在计算分析的支持下,本研究揭示的一系列性质将血红素代谢产物的三吡咯二酮和二吡咯二酮基序带入氧化还原活性配体领域,在那里它们有望为催化、传感、超分子体系和功能材料提供新的机会。