Courant Institute, New York University, New York, New York, United States of America.
Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, Madrid, Spain.
PLoS Comput Biol. 2021 Dec 6;17(12):e1009240. doi: 10.1371/journal.pcbi.1009240. eCollection 2021 Dec.
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.
交联肌动蛋白网络是细胞细胞骨架的主要成分,已经成为许多实验和建模研究的主题。虽然这些研究表明网络是粘弹性材料,在短时间尺度上从弹性固体演变为粘性流体,但仍存在一些问题,例如每个渐近状态的持续时间、周围流体的作用以及网络在中间时间尺度上的行为。在这里,我们对被动交联的非布朗肌动蛋白网络进行了详细的模拟,以量化粘弹性行为中涉及的主要时间尺度,研究非局部流体动力学相互作用的作用,并从离散随机模拟中参数化连续体模型。为此,我们扩展了我们最近用于半刚性细丝悬浮液的计算框架,该框架基于非局部细长体理论,应用于具有动态交联剂和有限细丝寿命的肌动蛋白网络。我们引入了一个模型,其中交联剂是带有粘性末端的弹性弹簧,这些粘性末端随机地与弹性细丝结合和分离,并以特征速率随机翻转。我们表明,根据参数的不同,网络会演变成一种稳定的形态,要么是各向同性的肌动蛋白网格,要么是带有嵌入肌动蛋白束的网格。对于不同程度的束状结构,我们对数百个细丝和交联剂组成的网络施加小振幅振荡剪切变形,并从网络中提取三个时间尺度。我们分析了这些时间尺度(范围从百分之一秒到几秒钟的肌动蛋白翻转时间)对链接的动态性质、溶剂粘度和细丝弯曲刚度的依赖性。我们表明,网络在短时间尺度上主要是弹性的,弹性主要来自交联剂,在长时间尺度上主要是粘性的,有效粘性主要来自交联剂的拉伸和断裂。我们表明,非局部流体动力学相互作用的影响取决于网络形态:对于均匀的网状结构,非局部流体动力学对粘性行为只有很小的修正,但对于束状结构,它不仅阻碍了束的形成,而且一旦束形成,还显著降低了对剪切的阻力。我们使用我们的结果构建了网络的三时间尺度广义 Maxwell 模型。