Suppr超能文献

存在缺失数据时基于似然法的系统发育分析的误导性结果。

Misleading results of likelihood-based phylogenetic analyses in the presence of missing data.

作者信息

Simmons Mark P

出版信息

Cladistics. 2012 Apr;28(2):208-222. doi: 10.1111/j.1096-0031.2011.00375.x. Epub 2011 Oct 3.

Abstract

The amount of missing data in many contemporary phylogenetic analyses has substantially increased relative to previous norms, particularly in supermatrix studies that compile characters from multiple previous analyses. In such cases the missing data are non-randomly distributed and usually present in all partitions (i.e. groups of characters) sampled. Parametric methods often provide greater resolution and support than parsimony in such cases, yet this may be caused by extrapolation of branch lengths from one partition to another. In this study I use contrived and simulated examples to demonstrate that likelihood, even when applied to simple matrices with little or no homoplasy, homogeneous evolution across groups of characters, perfect model fit, and hundreds or thousands of variable characters, can provide strong support for incorrect topologies when the matrices have non-random distributions of missing data distributed across all partitions. I do so using a systematic exploration of alternative seven-taxon tree topologies and distributions of missing data in two partitions to demonstrate that these likelihood-based artefacts may occur frequently and are not shared by parsimony. I also demonstrate that Bayesian Markov chain Monte Carlo analysis is more robust to these artefacts than is likelihood. © The Willi Hennig Society 2011.

摘要

与之前的标准相比,许多当代系统发育分析中的缺失数据量大幅增加,尤其是在从多个先前分析中汇编性状的超级矩阵研究中。在这种情况下,缺失数据并非随机分布,通常存在于所有抽样的分区(即性状组)中。在这种情况下,参数方法通常比简约法提供更高的分辨率和支持度,但这可能是由于将分支长度从一个分区外推到另一个分区所致。在本研究中,我使用人为设定和模拟的例子来证明,即使将似然法应用于几乎没有或没有同塑性、性状组间进化均匀、模型拟合完美且有数百或数千个可变性状的简单矩阵时,当矩阵在所有分区中具有非随机分布的缺失数据时,似然法也可能为错误的拓扑结构提供有力支持。我通过系统探索七分类单元树拓扑结构的替代方案以及两个分区中缺失数据的分布来做到这一点,以证明这些基于似然法的假象可能经常出现,且简约法不会出现这种情况。我还证明,贝叶斯马尔可夫链蒙特卡罗分析比似然法对这些假象更具稳健性。© 威利·亨尼希协会 2011 年。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验