Suppr超能文献

FIN-PRINT:一个完全自动化的多阶段基于深度学习的框架,用于个体虎鲸识别。

FIN-PRINT a fully-automated multi-stage deep-learning-based framework for the individual recognition of killer whales.

机构信息

Department of Computer Science - Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 3, 91058, Erlangen, Germany.

Bay Cetology, 257 Fir street, Alert Bay, BC, V0N 1A0, Canada.

出版信息

Sci Rep. 2021 Dec 6;11(1):23480. doi: 10.1038/s41598-021-02506-6.

Abstract

Biometric identification techniques such as photo-identification require an array of unique natural markings to identify individuals. From 1975 to present, Bigg's killer whales have been photo-identified along the west coast of North America, resulting in one of the largest and longest-running cetacean photo-identification datasets. However, data maintenance and analysis are extremely time and resource consuming. This study transfers the procedure of killer whale image identification into a fully automated, multi-stage, deep learning framework, entitled FIN-PRINT. It is composed of multiple sequentially ordered sub-components. FIN-PRINT is trained and evaluated on a dataset collected over an 8-year period (2011-2018) in the coastal waters off western North America, including 121,000 human-annotated identification images of Bigg's killer whales. At first, object detection is performed to identify unique killer whale markings, resulting in 94.4% recall, 94.1% precision, and 93.4% mean-average-precision (mAP). Second, all previously identified natural killer whale markings are extracted. The third step introduces a data enhancement mechanism by filtering between valid and invalid markings from previous processing levels, achieving 92.8% recall, 97.5%, precision, and 95.2% accuracy. The fourth and final step involves multi-class individual recognition. When evaluated on the network test set, it achieved an accuracy of 92.5% with 97.2% top-3 unweighted accuracy (TUA) for the 100 most commonly photo-identified killer whales. Additionally, the method achieved an accuracy of 84.5% and a TUA of 92.9% when applied to the entire 2018 image collection of the 100 most common killer whales. The source code of FIN-PRINT can be adapted to other species and will be publicly available.

摘要

生物识别技术,如照片识别,需要一系列独特的自然标记来识别个体。从 1975 年至今,大比氏海豚的照片识别工作一直在北美西海岸进行,这是最大和运行时间最长的鲸目动物照片识别数据集之一。然而,数据维护和分析非常耗时耗资源。本研究将虎鲸图像识别过程转移到一个完全自动化的、多阶段的深度学习框架中,称为 FIN-PRINT。它由多个顺序排列的子组件组成。FIN-PRINT 是在一个数据集上进行训练和评估的,该数据集是在北美西海岸沿海地区收集的,时间跨度为 8 年(2011-2018 年),包括 121000 张大比氏海豚的人工标记识别图像。首先,进行目标检测以识别独特的虎鲸标记,召回率为 94.4%,准确率为 94.1%,平均精度(mAP)为 93.4%。其次,提取所有先前识别的天然虎鲸标记。第三步通过过滤前处理级别之间的有效和无效标记引入数据增强机制,实现了 92.8%的召回率、97.5%的精度、95.2%的准确率。第四步也是最后一步涉及多类个体识别。在网络测试集上进行评估时,它在 100 只最常见的照片识别虎鲸中实现了 92.5%的准确率,97.2%的未加权准确率(TUA)排名前 3 位。此外,当应用于 100 只最常见虎鲸的整个 2018 年图像集合时,该方法的准确率为 84.5%,TUA 为 92.9%。FIN-PRINT 的源代码可以适用于其他物种,并将公开发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3a/8648837/176693639b74/41598_2021_2506_Fig1_HTML.jpg

相似文献

2
Revised taxonomy of eastern North Pacific killer whales (): Bigg's and resident ecotypes deserve species status.
R Soc Open Sci. 2024 Mar 27;11(3):231368. doi: 10.1098/rsos.231368. eCollection 2024 Mar.
5
Applying deep learning to right whale photo identification.
Conserv Biol. 2019 Jun;33(3):676-684. doi: 10.1111/cobi.13226. Epub 2018 Nov 28.
6
Geographic patterns of genetic differentiation among killer whales in the northern North Pacific.
J Hered. 2013 Nov-Dec;104(6):737-54. doi: 10.1093/jhered/est037. Epub 2013 Jul 11.
7
Genomic Impact of Whaling in North Atlantic Fin Whales.
Mol Biol Evol. 2022 May 3;39(5). doi: 10.1093/molbev/msac094.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验