Suppr超能文献

新冠病毒肺炎与特发性肺纤维化具有共同的驱动性Ⅱ型肺泡上皮细胞病变特征。

COVID-19 lung disease shares driver AT2 cytopathic features with Idiopathic pulmonary fibrosis.

作者信息

Sinha Saptarshi, Castillo Vanessa, Espinoza Celia R, Tindle Courtney, Fonseca Ayden G, Dan Jennifer M, Katkar Gajanan D, Das Soumita, Sahoo Debashis, Ghosh Pradipta

出版信息

bioRxiv. 2022 Jul 18:2021.11.28.470269. doi: 10.1101/2021.11.28.470269.

Abstract

BACKGROUND

In the aftermath of Covid-19, some patients develop a fibrotic lung disease, i.e., ost- OVID-19 ung isease (PCLD), for which we currently lack insights into pathogenesis, disease models, or treatment options.

METHOD

Using an AI-guided approach, we analyzed > 1000 human lung transcriptomic datasets associated with various lung conditions using two viral pandemic signatures (ViP and sViP) and one covid lung-derived signature. Upon identifying similarities between COVID-19 and idiopathic pulmonary fibrosis (IPF), we subsequently dissected the basis for such similarity from molecular, cytopathic, and immunologic perspectives using a panel of IPF-specific gene signatures, alongside signatures of alveolar type II (AT2) cytopathies and of prognostic monocyte-driven processes that are known drivers of IPF. Transcriptome-derived findings were used to construct protein-protein interaction (PPI) network to identify the major triggers of AT2 dysfunction. Key findings were validated in hamster and human adult lung organoid (ALO) pre-clinical models of COVID-19 using immunohistochemistry and qPCR.

FINDINGS

COVID-19 resembles IPF at a fundamental level; it recapitulates the gene expression patterns (ViP and IPF signatures), cytokine storm (IL15-centric), and the AT2 cytopathic changes, e.g., injury, DNA damage, arrest in a transient, damage-induced progenitor state, and senescence-associated secretory phenotype (SASP). These immunocytopathic features were induced in pre-clinical COVID models (ALO and hamster) and reversed with effective anti-CoV-2 therapeutics in hamsters. PPI-network analyses pinpointed ER stress as one of the shared early triggers of both diseases, and IHC studies validated the same in the lungs of deceased subjects with COVID-19 and SARS-CoV-2-challenged hamster lungs. Lungs from mice, in which ER stress is induced specifically in the AT2 cells, faithfully recapitulate the host immune response and alveolar cytopathic changes that are induced by SARS-CoV-2.

INTERPRETATION

Like IPF, COVID-19 may be driven by injury-induced ER stress that culminates into progenitor state arrest and SASP in AT2 cells. The ViP signatures in monocytes may be key determinants of prognosis. The insights, signatures, disease models identified here are likely to spur the development of therapies for patients with IPF and other fibrotic interstitial lung diseases.

FUNDING

This work was supported by the National Institutes for Health grants R01-GM138385 and AI155696 and funding from the Tobacco-Related disease Research Program (R01RG3780).

ONE SENTENCE SUMMARY

Severe COVID-19 triggers cellular processes seen in fibrosing Interstitial Lung Disease.

RESEARCH IN CONTEXT

In its aftermath, the COVID-19 pandemic has left many survivors, almost a third of those who recovered, with a mysterious long-haul form of the disease which culminates in a fibrotic form of interstitial lung disease (post-COVID-19 ILD). Post-COVID-19 ILD remains a largely unknown entity. Currently, we lack insights into the core cytopathic features that drive this condition. Using an AI-guided approach, which involves the use of sets of gene signatures, protein-protein network analysis, and a hamster model of COVID-19, we have revealed here that COVID-19 -lung fibrosis resembles IPF, the most common form of ILD, at a fundamental levelâ€"showing similar gene expression patterns in the lungs and blood, and dysfunctional AT2 processes (ER stress, telomere instability, progenitor cell arrest, and senescence). These findings are insightful because AT2 cells are known to contain an elegant quality control network to respond to intrinsic or extrinsic stress; a failure of such quality control results in diverse cellular phenotypes, of which ER stress appears to be a point of convergence, which appears to be sufficient to drive downstream fibrotic remodeling in the lung. Because unbiased computational methods identified the shared fundamental aspects of gene expression and cellular processes between COVID-19 and IPF, the impact of our findings is likely to go beyond COVID-19 or any viral pandemic. The insights, tools (disease models, gene signatures, and biomarkers), and mechanisms identified here are likely to spur the development of therapies for patients with IPF and, other fibrotic interstitial lung diseases, all of whom have limited or no treatment options. To dissect the validated prognostic biomarkers to assess and track the risk of pulmonary fibrosis and develop therapeutics to halt fibrogenic progression.

摘要

背景

在新冠疫情之后,一些患者患上了纤维化肺病,即新冠后肺部疾病(PCLD),目前我们对其发病机制、疾病模型或治疗方案尚缺乏深入了解。

方法

我们采用人工智能引导的方法,使用两种病毒大流行特征(ViP和sViP)以及一种源自新冠肺部的特征,分析了1000多个与各种肺部疾病相关的人类肺转录组数据集。在确定新冠病毒感染(COVID-19)与特发性肺纤维化(IPF)之间的相似性后,我们随后使用一组IPF特异性基因特征,以及肺泡II型(AT2)细胞病变和已知的IPF驱动因素——预后性单核细胞驱动过程的特征,从分子学、细胞病理学和免疫学角度剖析了这种相似性的基础。转录组学研究结果被用于构建蛋白质-蛋白质相互作用(PPI)网络,以识别AT2功能障碍的主要触发因素。关键发现通过免疫组织化学和qPCR在新冠病毒感染的仓鼠和人类成人肺类器官(ALO)临床前模型中得到验证。

研究结果

COVID-19在根本层面上与IPF相似;它再现了基因表达模式(ViP和IPF特征)、细胞因子风暴(以IL15为中心)以及AT2细胞病变变化,如损伤、DNA损伤、停滞在短暂的、损伤诱导的祖细胞状态以及衰老相关分泌表型(SASP)。这些免疫细胞病变特征在临床前新冠模型(ALO和仓鼠)中被诱导,并在仓鼠中通过有效的抗新冠病毒2治疗得以逆转。PPI网络分析确定内质网应激是这两种疾病共同的早期触发因素之一,免疫组织化学研究在死于COVID-19的受试者的肺部以及感染SARS-CoV-2的仓鼠肺部验证了这一点。在AT2细胞中特异性诱导内质网应激的小鼠肺部忠实地再现了由SARS-CoV-2诱导的宿主免疫反应和肺泡细胞病变变化。

解读

与IPF一样,COVID-19可能由损伤诱导的内质网应激驱动,最终导致AT2细胞中的祖细胞状态停滞和SASP。单核细胞中的ViP特征可能是预后的关键决定因素。这里确定的见解、特征、疾病模型可能会推动针对IPF和其他纤维化间质性肺病患者的治疗方法的开发。

资金支持

这项工作得到了美国国立卫生研究院R01-GM138385赠款和AI155696赠款以及烟草相关疾病研究项目(R01RG3780)的资助。

一句话总结

严重的COVID-19引发了纤维化间质性肺病中出现的细胞过程。

研究背景

在新冠疫情之后,许多幸存者,几乎三分之一康复者,出现了一种神秘的长期疾病形式,最终发展为纤维化形式的间质性肺病(新冠后ILD)。新冠后ILD在很大程度上仍然是一个未知的实体。目前,我们对导致这种疾病的核心细胞病变特征缺乏了解。通过使用人工智能引导的方法,包括使用基因特征集、蛋白质-蛋白质网络分析和新冠病毒感染的仓鼠模型,我们在此揭示,COVID-19肺纤维化在根本层面上与最常见的ILD形式IPF相似——在肺部和血液中显示出相似的基因表达模式,以及功能失调的AT2过程(内质网应激、端粒不稳定、祖细胞停滞和衰老)。这些发现具有启发性,因为已知AT2细胞包含一个完善的质量控制网络来应对内在或外在压力;这种质量控制的失败会导致多种细胞表型,其中内质网应激似乎是一个汇聚点,似乎足以驱动肺部下游的纤维化重塑。由于无偏计算方法确定了COVID-19和IPF之间基因表达和细胞过程的共同基本方面,我们的发现可能不仅适用于COVID-19或任何病毒大流行。这里确定的见解、工具(疾病模型、基因特征和生物标志物)和机制可能会推动针对IPF和其他纤维化间质性肺病患者的治疗方法的开发,这些患者目前的治疗选择有限或没有治疗选择。剖析经过验证的预后生物标志物,以评估和跟踪肺纤维化的风险,并开发治疗方法以阻止纤维化进展。

相似文献

8
Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis.肺泡上皮祖细胞衰老:肺纤维化的关键驱动因素。
Am J Physiol Cell Physiol. 2023 Aug 1;325(2):C483-C495. doi: 10.1152/ajpcell.00239.2023. Epub 2023 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验