Ma Xiaoping, Deng Lili, Lu Manting, He Yi, Zou Shuai, Xin Yu
School of Physical Science and Technology & Jiangsu Key Laboratory of Thin Films, People's Republic of China.
Soochow University, Suzhou 215006, People's Republic of China.
Nanotechnology. 2021 Dec 24;33(12). doi: 10.1088/1361-6528/ac4068.
Although researches on non-noble metal electrocatalysts have been made some progress recently, their performance in proton exchange membrane water electrolyzer is still incomparable to that of noble-metal-based catalysts. Therefore, it is a more practical way to improve the utilization of precious metals in electrocatalysts for oxygen evolution reaction (OER) in the acidic medium. Herein, nanostructured IrCo@IrCoOcore-shell electrocatalysts composed of IrCo alloy core and IrCoOshell were synthesized through a simple colloidally synthesis and calcination method. As expected, the hybrid IrCo-200 NPs with petal-like morphology show the best OER activities in acidic electrolytes. They deliver lower overpotential and better electrocatalytic kinetics than pristine IrCo alloy and commercial Ir/C, reaching a low overpotential ( = 10 mA cm) of 259 mV (versus RHE) and a Tafel slope of 59 mV dec. The IrCo-200 NPs displayed robust durability with life time of about 55 h in acidic solution under a large current density of 50 mA cm. The enhanced electrocatalytic activity may be associated with the unique metal/amorphous metal oxide core-shell heterostructure, allowing the improved charge transferability. Moreover, the *OH-rich amorphous shell functions as the active site for OER and prevents the further dissolution of the metallic core and thus ensures high stability.
尽管近年来对非贵金属电催化剂的研究取得了一些进展,但其在质子交换膜水电解槽中的性能仍无法与基于贵金属的催化剂相比。因此,提高电催化剂中贵金属在酸性介质中析氧反应(OER)的利用率是一种更切实可行的方法。在此,通过简单的胶体合成和煅烧方法合成了由IrCo合金核和IrCoO壳组成的纳米结构IrCo@IrCoO核壳电催化剂。正如预期的那样,具有花瓣状形态的混合IrCo-200纳米颗粒在酸性电解质中表现出最佳的OER活性。它们比原始IrCo合金和商业Ir/C具有更低的过电位和更好的电催化动力学,在10 mA cm²时达到259 mV(相对于可逆氢电极)的低过电位和59 mV dec⁻¹的塔菲尔斜率。IrCo-200纳米颗粒在50 mA cm²的大电流密度下在酸性溶液中表现出约55小时寿命的强大耐久性。增强的电催化活性可能与独特的金属/非晶态金属氧化物核壳异质结构有关,从而提高了电荷转移能力。此外,富含*OH的非晶态壳作为OER的活性位点,防止金属核进一步溶解,从而确保高稳定性。