Suppr超能文献

用于乳腺癌细胞中 MT1-MMP 标记和成像的无干扰 SERS 纳米探针。

Interference-free SERS nanoprobes for labeling and imaging of MT1-MMP in breast cancer cells.

机构信息

Jiangsu Key Laboratory on Opto-electronic Technology, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, Jiangsu, People's Republic of China.

Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China.

出版信息

Nanotechnology. 2021 Dec 22;33(11). doi: 10.1088/1361-6528/ac4065.

Abstract

The expression of membrane type-1 matrix metalloproteinase (MT1-MMP) in cancer cells is critical for understanding the development, invasion and metastasis of cancers. In this study, we devised an interference-free surface-enhanced Raman scattering (SERS) nanoprobe with high selectivity and specificity for MT1-MMP. The nanoprobe was comprised of silver core-silica shell nanoparticle with a Raman reporter tag (4-mercaptobenzonitrile) embedded in the interface. Moreover, the nitrile group in 4-mercaptobenzonitrile shows a unique characteristic peak in the Raman-silent region (1800-2800 cm), which eliminates spectral overlapping or background interference in the Raman fingerprint region (500-1800 cm). After surface modification with a targeting peptide, the nanoprobe allowed visualization and evaluation of MT1-MMP in breast cancer cells via SERS spectrometry. This interference-free, peptide-functionalized SERS nanoprobe is supposed to be conducive to early diagnosis and invasive assessment of cancer in clinical settings.

摘要

膜型基质金属蛋白酶-1(MT1-MMP)在癌细胞中的表达对于理解癌症的发展、侵袭和转移至关重要。在这项研究中,我们设计了一种无干扰的表面增强拉曼散射(SERS)纳米探针,具有高选择性和特异性的 MT1-MMP。该纳米探针由银核-二氧化硅壳纳米粒子组成,在界面中嵌入了一个拉曼报告标签(4-巯基苯甲腈)。此外,4-巯基苯甲腈中的氰基在拉曼静默区(1800-2800cm)显示出独特的特征峰,消除了拉曼指纹区(500-1800cm)中的光谱重叠或背景干扰。经过靶向肽的表面修饰后,该纳米探针允许通过 SERS 光谱法可视化和评估乳腺癌细胞中的 MT1-MMP。这种无干扰的、肽功能化的 SERS 纳米探针有望有助于癌症的早期诊断和临床侵袭性评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验