Suppr超能文献

基于 SERS 的等离子体激元传感器在疾病诊断、生物分子检测及机器学习技术方面的最新研究进展。

Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques.

机构信息

Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia-Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India.

出版信息

Biosensors (Basel). 2023 Feb 27;13(3):328. doi: 10.3390/bios13030328.

Abstract

Surface-enhanced Raman spectroscopy/scattering (SERS) has evolved into a popular tool for applications in biology and medicine owing to its ease-of-use, non-destructive, and label-free approach. Advances in plasmonics and instrumentation have enabled the realization of SERS's full potential for the trace detection of biomolecules, disease diagnostics, and monitoring. We provide a brief review on the recent developments in the SERS technique for biosensing applications, with a particular focus on machine learning techniques used for the same. Initially, the article discusses the need for plasmonic sensors in biology and the advantage of SERS over existing techniques. In the later sections, the applications are organized as SERS-based biosensing for disease diagnosis focusing on cancer identification and respiratory diseases, including the recent SARS-CoV-2 detection. We then discuss progress in sensing microorganisms, such as bacteria, with a particular focus on plasmonic sensors for detecting biohazardous materials in view of homeland security. At the end of the article, we focus on machine learning techniques for the (a) identification, (b) classification, and (c) quantification in SERS for biology applications. The review covers the work from 2010 onwards, and the language is simplified to suit the needs of the interdisciplinary audience.

摘要

表面增强拉曼光谱/散射(SERS)由于其易于使用、非破坏性和无标记的特点,已发展成为生物学和医学应用中一种流行的工具。等离子体学和仪器的进步使 SERS 能够充分发挥其在痕量生物分子检测、疾病诊断和监测方面的潜力。我们简要回顾了用于生物传感应用的 SERS 技术的最新进展,特别关注用于相同目的的机器学习技术。首先,本文讨论了生物学中对等离子体传感器的需求以及 SERS 相对于现有技术的优势。在后面的部分中,根据应用将 SERS 生物传感组织为疾病诊断,重点是癌症识别和呼吸道疾病,包括最近对 SARS-CoV-2 的检测。然后,我们讨论了对微生物(如细菌)的传感进展,特别关注针对国土安全中生物危害材料检测的等离子体传感器。在文章的最后,我们重点介绍了用于生物学应用中 SERS 的(a)识别、(b)分类和(c)定量的机器学习技术。该综述涵盖了 2010 年以来的工作,并简化了语言以适应跨学科受众的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd56/10046859/0471aed405a6/biosensors-13-00328-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验