Chen Haiyang, Gao Fangzheng, Zong Guangdeng
IEEE Trans Cybern. 2023 Jun;53(6):3493-3505. doi: 10.1109/TCYB.2021.3127888. Epub 2023 May 17.
This article addresses the finite-time dissipative fuzzy state estimation for Markov jump systems under mixed cyber attacks. A probabilistic event-triggered mechanism (PETM) is proposed to reduce the unwanted network traffic by using the statistic information of network-induced delays. The dual asynchronizations characterized by asynchronous modes and mismatched premise variables are tackled simultaneously. Under the PETM, Takagi-Sugeno (T-S) fuzzy state estimators are first constructed based on the imperfect measurements subject to mixed cyber attacks and exogenous disturbances. Less conservative criteria relying on both fuzzy rules and jumping modes are established to achieve the strictly (Q,S,R) - ϑ -dissipative finite-time state estimation performance. Furthermore, a synthesis algorithm is derived to calculate the fuzzy state estimator gains by virtue of an improved matrix decoupling technique. Finally, two examples are utilized to validate the effectiveness and advantage of the proposed results.
本文研究了混合网络攻击下马尔可夫跳跃系统的有限时间耗散模糊状态估计问题。提出了一种概率事件触发机制(PETM),利用网络诱导延迟的统计信息来减少不必要的网络流量。同时解决了由异步模式和不匹配前提变量表征的双重异步问题。在PETM下,首先基于受混合网络攻击和外部干扰的不完美测量构建了Takagi-Sugeno(T-S)模糊状态估计器。建立了依赖于模糊规则和跳跃模式的不太保守的准则,以实现严格的(Q,S,R)-ϑ-耗散有限时间状态估计性能。此外,借助改进的矩阵解耦技术,推导了一种综合算法来计算模糊状态估计器增益。最后,通过两个例子验证了所提结果的有效性和优势。