Suppr超能文献

使用滚动样本文本建模预测标准化绝对收益。

Predicting standardized absolute returns using rolling-sample textual modelling.

机构信息

Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong.

出版信息

PLoS One. 2021 Dec 7;16(12):e0260132. doi: 10.1371/journal.pone.0260132. eCollection 2021.

Abstract

Understanding how textual information impacts financial market volatility has been one of the growing topics in financial econometric research. In this paper, we aim to examine the relationship between the volatility measure that is extracted from GARCH modelling and textual news information both publicly available and from subscription, and the performances of the two datasets are compared. We utilize a latent Dirichlet allocation method to capture the dynamic features of the textual data overtime by summarizing their statistical outputs, such as topic distributions in documents and word distributions in topics. In addition, we transform various measures representing the popularity and diversity of topics to form predictors for a rolling regression model to assess the usefulness of textual information. The proposed method captures the statistical properties of textual information over different time periods and its performance is evaluated in an out-of-sample analysis. Our results show that the topic measures are more useful for predicting our volatility proxy, the unexplained variance from the GARCH model than the simple moving average. The finding indicates that our method is helpful in extracting significant textual information to improve the prediction of stock market volatility.

摘要

理解文本信息如何影响金融市场波动一直是金融计量经济学研究中日益增长的话题之一。在本文中,我们旨在检验从 GARCH 建模中提取的波动率度量与公开和订阅的文本新闻信息之间的关系,并比较这两个数据集的性能。我们利用潜在狄利克雷分配方法通过总结其统计输出,如文档中的主题分布和主题中的单词分布,来捕捉文本数据随时间的动态特征。此外,我们将各种表示主题流行度和多样性的度量转换为滚动回归模型的预测因子,以评估文本信息的有用性。所提出的方法捕捉了不同时间段内文本信息的统计特性,并在样本外分析中评估其性能。我们的结果表明,主题度量比简单移动平均值更有助于预测我们的波动率代理,即 GARCH 模型的未解释方差。这一发现表明,我们的方法有助于提取重要的文本信息,以提高对股票市场波动的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bb3/8651148/495867202d64/pone.0260132.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验