Am J Epidemiol. 2022 Feb 19;191(3):499-502. doi: 10.1093/aje/kwab285.
There are unique challenges to identifying causes of and developing strategies for prevention of rare cancers, driven by the difficulty in estimating incidence, prevalence, and survival due to small case numbers. Using a Poisson modeling approach, Salmerón et al. (Am J Epidemiol. 2022;191(3):487-498) built upon their previous work to estimate incidence rates of rare cancers in Europe using a Bayesian framework, establishing a uniform prior for a measure of variability for country-specific incidence rates. They offer a methodology with potential transferability to other settings with similar cancer surveillance infrastructure. However, the approach does not consider the spatiotemporal correlation of rare cancer case counts and other, potentially more appropriate nonnormal probability distributions. In this commentary, we discuss the implications of future work from cancer epidemiology and spatial epidemiology perspectives. We describe the possibility of developing prediction models tailored to each type of rare cancer; incorporating the spatial heterogeneity in at-risk populations, surveillance coverage, and risk factors in these predictions; and considering a modeling framework with which to address the inherent spatiotemporal components of these data. We note that extension of this methodology to estimate subcountry rates at provincial, state, or smaller geographic levels would be useful but would pose additional statistical challenges.
罕见癌症的病因识别和预防策略制定存在独特的挑战,这是由于病例数量少,导致发病率、患病率和生存率的估计存在困难。Salmerón 等人(Am J Epidemiol. 2022;191(3):487-498)使用泊松模型方法,在前一项工作的基础上,采用贝叶斯框架估计欧洲罕见癌症的发病率,为国家特异性发病率的变异性度量建立了统一的先验概率。他们提供了一种具有潜在可转移性的方法,可用于具有类似癌症监测基础设施的其他环境。但是,该方法没有考虑罕见癌症病例计数的时空相关性以及其他可能更合适的非正态概率分布。在这篇评论中,我们从癌症流行病学和空间流行病学的角度讨论了未来工作的意义。我们描述了为每种罕见癌症开发定制预测模型的可能性;在这些预测中纳入高危人群、监测覆盖范围和风险因素的空间异质性;并考虑一种建模框架来解决这些数据固有的时空成分。我们注意到,将这种方法扩展到估计省、州或更小地理级别的国家以下地区的发病率将是有用的,但会带来额外的统计挑战。