Suppr超能文献

估算特定国家罕见癌症的发病率:使用欧洲癌症登记处数据的建模方法的比较性能分析。

Estimating Country-Specific Incidence Rates of Rare Cancers: Comparative Performance Analysis of Modeling Approaches Using European Cancer Registry Data.

出版信息

Am J Epidemiol. 2022 Feb 19;191(3):487-498. doi: 10.1093/aje/kwab262.

Abstract

Estimating incidence of rare cancers is challenging for exceptionally rare entities and in small populations. In a previous study, investigators in the Information Network on Rare Cancers (RARECARENet) provided Bayesian estimates of expected numbers of rare cancers and 95% credible intervals for 27 European countries, using data collected by population-based cancer registries. In that study, slightly different results were found by implementing a Poisson model in integrated nested Laplace approximation/WinBUGS platforms. In this study, we assessed the performance of a Poisson modeling approach for estimating rare cancer incidence rates, oscillating around an overall European average and using small-count data in different scenarios/computational platforms. First, we compared the performance of frequentist, empirical Bayes, and Bayesian approaches for providing 95% confidence/credible intervals for the expected rates in each country. Second, we carried out an empirical study using 190 rare cancers to assess different lower/upper bounds of a uniform prior distribution for the standard deviation of the random effects. For obtaining a reliable measure of variability for country-specific incidence rates, our results suggest the suitability of using 1 as the lower bound for that prior distribution and selecting the random-effects model through an averaged indicator derived from 2 Bayesian model selection criteria: the deviance information criterion and the Watanabe-Akaike information criterion.

摘要

估计罕见癌症的发病率对于非常罕见的实体和小人群来说具有挑战性。在之前的一项研究中,罕见癌症信息网络(RARECARENet)的研究人员使用基于人群的癌症登记处收集的数据,为 27 个欧洲国家提供了罕见癌症预期数量的贝叶斯估计值和 95%可信区间。在该研究中,通过在集成嵌套拉普拉斯逼近/WinBUGS 平台上实施泊松模型,得到了略有不同的结果。在这项研究中,我们评估了泊松模型方法在估计罕见癌症发病率方面的性能,该方法围绕总体欧洲平均值波动,并在不同情况下/计算平台中使用小计数数据。首先,我们比较了频率主义、经验贝叶斯和贝叶斯方法在为每个国家的预期率提供 95%置信/可信区间方面的性能。其次,我们使用 190 种罕见癌症进行了一项实证研究,以评估用于随机效应标准差的均匀先验分布的不同下限/上限。为了获得国家特异性发病率的可靠变异衡量标准,我们的结果表明,使用 1 作为该先验分布的下限,并通过从 2 个贝叶斯模型选择标准(偏差信息准则和 Watanabe-Akaike 信息准则)得出的平均值指标来选择随机效应模型是合适的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af49/8895392/8c24dfe31694/kwab262f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验