Suppr超能文献

SGNNMD:用于预测 miRNA-疾病关联失调类型的有符号图神经网络。

SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab464.

Abstract

MiRNAs are a class of small non-coding RNA molecules that play an important role in many biological processes, and determining miRNA-disease associations can benefit drug development and clinical diagnosis. Although great efforts have been made to develop miRNA-disease association prediction methods, few attention has been paid to in-depth classification of miRNA-disease associations, e.g. up/down-regulation of miRNAs in diseases. In this paper, we regard known miRNA-disease associations as a signed bipartite network, which has miRNA nodes, disease nodes and two types of edges representing up/down-regulation of miRNAs in diseases, and propose a signed graph neural network method (SGNNMD) for predicting deregulation types of miRNA-disease associations. SGNNMD extracts subgraphs around miRNA-disease pairs from the signed bipartite network and learns structural features of subgraphs via a labeling algorithm and a neural network, and then combines them with biological features (i.e. miRNA-miRNA functional similarity and disease-disease semantic similarity) to build the prediction model. In the computational experiments, SGNNMD achieves highly competitive performance when compared with several baselines, including the signed graph link prediction methods, multi-relation prediction methods and one existing deregulation type prediction method. Moreover, SGNNMD has good inductive capability and can generalize to miRNAs/diseases unseen during the training.

摘要

miRNAs 是一类小的非编码 RNA 分子,在许多生物过程中发挥着重要作用,确定 miRNA 与疾病的关联有助于药物开发和临床诊断。尽管已经做出了巨大的努力来开发 miRNA 与疾病的关联预测方法,但很少有人关注 miRNA 与疾病的关联的深入分类,例如疾病中 miRNA 的上调/下调。在本文中,我们将已知的 miRNA 与疾病的关联视为一个有向二部图网络,其中包含 miRNA 节点、疾病节点和两种类型的边,分别表示疾病中 miRNA 的上调/下调,并提出了一种用于预测 miRNA 与疾病关联的失调类型的有向图神经网络方法(SGNNMD)。SGNNMD 从有向二部图网络中提取 miRNA-疾病对周围的子图,并通过标记算法和神经网络学习子图的结构特征,然后将它们与生物学特征(即 miRNA-miRNA 功能相似性和疾病-疾病语义相似性)相结合,构建预测模型。在计算实验中,与包括有向图链接预测方法、多关系预测方法和现有的一种失调类型预测方法在内的几个基线相比,SGNNMD 具有很高的竞争性能。此外,SGNNMD 具有良好的归纳能力,可以推广到训练过程中未见过的 miRNA/疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验