Liu Dan-Qing, Kang Minkyung, Perry David, Chen Chang-Hui, West Geoff, Xia Xue, Chaudhuri Shayantan, Laker Zachary P L, Wilson Neil R, Meloni Gabriel N, Melander Marko M, Maurer Reinhard J, Unwin Patrick R
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310007, China.
Nat Commun. 2021 Dec 7;12(1):7110. doi: 10.1038/s41467-021-27339-9.
2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.
二维电极材料常用于电化学的导电载体上,因此非常需要了解这种电极配置中的基本电化学过程。在这里,采用了一种综合实验 - 理论方法来解析外球电子转移(OS - ET)中的关键电子相互作用,OS - ET是一种基本的电化学反应,是在铜电极上生长的石墨烯上进行的。使用扫描电化学池显微镜和共定位结构显微镜,经典的六胺钌(III/II)电对显示出电子转移动力学趋势:单层石墨烯>双层石墨烯>多层石墨烯。通过速率理论的发展,使用用于电子转移的Schmickler - Newns - Anderson模型哈密顿量,并明确纳入双层中的静电相互作用,通过恒电位密度泛函理论计算进行参数化,定量地解释了这种趋势。电子转移机制主要是绝热的;后续石墨烯层的添加增加了接触电位,导致电极/电解质界面处电子转移的有效势垒增加。