Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom.
School of Engineering and Built Environment, Glasgow Caledonian University , Glasgow G4 0BA, United Kingdom.
Acc Chem Res. 2016 Sep 20;49(9):2041-8. doi: 10.1021/acs.accounts.6b00301. Epub 2016 Aug 8.
Carbon materials have a long history of use as electrodes in electrochemistry, from (bio)electroanalysis to applications in energy technologies, such as batteries and fuel cells. With the advent of new forms of nanocarbon, particularly, carbon nanotubes and graphene, carbon electrode materials have taken on even greater significance for electrochemical studies, both in their own right and as components and supports in an array of functional composites. With the increasing prominence of carbon nanomaterials in electrochemistry comes a need to critically evaluate the experimental framework from which a microscopic understanding of electrochemical processes is best developed. This Account advocates the use of emerging electrochemical imaging techniques and confined electrochemical cell formats that have considerable potential to reveal major new perspectives on the intrinsic electrochemical activity of carbon materials, with unprecedented detail and spatial resolution. These techniques allow particular features on a surface to be targeted and models of structure-activity to be developed and tested on a wide range of length scales and time scales. When high resolution electrochemical imaging data are combined with information from other microscopy and spectroscopy techniques applied to the same area of an electrode surface, in a correlative-electrochemical microscopy approach, highly resolved and unambiguous pictures of electrode activity are revealed that provide new views of the electrochemical properties of carbon materials. With a focus on major sp(2) carbon materials, graphite, graphene, and single walled carbon nanotubes (SWNTs), this Account summarizes recent advances that have changed understanding of interfacial electrochemistry at carbon electrodes including: (i) Unequivocal evidence for the high activity of the basal surface of highly oriented pyrolytic graphite (HOPG), which is at least as active as noble metal electrodes (e.g., platinum) for outer-sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.
碳材料作为电极在电化学中有着悠久的历史,从(生物)电分析到电池和燃料电池等能源技术的应用。随着新型纳米碳的出现,特别是碳纳米管和石墨烯,碳电极材料在电化学研究中具有更大的意义,无论是作为功能复合材料的组成部分和支撑物,还是作为功能复合材料的组成部分和支撑物。随着碳纳米材料在电化学中的地位不断提高,人们需要批判性地评估从微观角度发展电化学过程的最佳实验框架。本综述主张使用新兴的电化学成像技术和受限的电化学池格式,这些技术具有揭示碳材料固有电化学活性的重大新视角的巨大潜力,具有前所未有的细节和空间分辨率。这些技术允许针对表面上的特定特征,并在广泛的长度和时间尺度上开发和测试结构-活性模型。当将高分辨率电化学成像数据与应用于电极表面同一区域的其他显微镜和光谱技术的信息结合起来,采用相关电化学显微镜方法时,可以揭示出电极活性的高分辨率和明确的图像,为碳材料的电化学性质提供新的观点。本综述主要关注主要的 sp(2) 碳材料,如石墨、石墨烯和单壁碳纳米管(SWNTs),总结了最近的进展,这些进展改变了对碳电极界面电化学的理解,包括:(i) 高取向热解石墨(HOPG)基面的高活性的明确证据,其对于外层电子转移的活性至少与贵金属电极(例如铂)相当。(ii) 证明了 HOPG 基面对于其他反应的高活性,而不需要台阶边缘或缺陷的催化,例如质子偶联电子转移、吸附分子的氧化还原转化、通过重氮电化学进行表面功能化以及金属电沉积的研究。(iii) 通过机械剥离石墨与化学气相沉积相比,对决定石墨烯电化学的不同因素的复杂相互作用进行了合理化,包括石墨烯的来源、层数、边缘、电子结构、氧化还原偶联和电极历史效应。(iv) 允许一维材料(SWNTs)的纳米尺度电化学与其电子特性(金属型和半导体型 SWNTs)、尺寸和质量相关的新方法,高分辨率成像揭示了 SWNT 侧壁的高活性以及缺陷对于一些电催化反应(例如氧还原反应)的重要性。强调的碳电极实验方法通常适用于其他电极材料,并为电化学和界面过程的研究设定了新的框架和方向。