Jamshed Wasim, Baleanu Dumitru, Nasir Nor Ain Azeany Moh, Shahzad Faisal, Nisar Kottakkaran Sooppy, Shoaib Muhammad, Ahmad Sohail, Ismail Khadiga Ahmed
Department of Mathematics, Capital University of Science and Technology (CUST), Islamabad, 44000, Pakistan.
Institute of Space Sciences, 077125, Magurele-Bucharest, Romania.
Sci Rep. 2021 Dec 7;11(1):23535. doi: 10.1038/s41598-021-02756-4.
Prandtl-Eyring hybrid nanofluid (P-EHNF) heat transfer and entropy generation were studied in this article. A slippery heated surface is used to test the flow and thermal transport properties of P-EHNF nanofluid. This investigation will also examine the effects of nano solid tubes morphologies, porosity materials, Cattaneo-Christov heat flow, and radiative flux. Predominant flow equations are written as partial differential equations (PDE). To find the solution, the PDEs were transformed into ordinary differential equations (ODEs), then the Keller box numerical approach was used to solve the ODEs. Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) using Engine Oil (EO) as a base fluid are studied in this work. The flow, temperature, drag force, Nusselt amount, and entropy measurement visually show significant findings for various variables. Notably, the comparison of P-EHNF's (MWCNT-SWCNT/EO) heat transfer rate with conventional nanofluid (SWCNT-EO) results in ever more significant upsurges. Spherical-shaped nano solid particles have the highest heat transport, whereas lamina-shaped nano solid particles exhibit the lowest heat transport. The model's entropy increases as the size of the nanoparticles get larger. A similar effect is seen when the radiative flow and the Prandtl-Eyring variable-II are improved.
本文研究了普朗特 - 艾林混合纳米流体(P - EHNF)的传热和熵产生。使用光滑加热表面来测试P - EHNF纳米流体的流动和热传输特性。本研究还将考察纳米固体管形态、孔隙率材料、卡塔尼奥 - 克里斯托夫热流和辐射通量的影响。主要流动方程写成偏微分方程(PDE)。为了求解,将偏微分方程转化为常微分方程(ODE),然后使用凯勒盒数值方法求解常微分方程。本工作研究了以发动机油(EO)为基础流体的单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)。流动、温度、阻力、努塞尔数和熵的测量直观地显示了各种变量的显著结果。值得注意的是,P - EHNF(MWCNT - SWCNT/EO)的传热速率与传统纳米流体(SWCNT - EO)相比有更显著的提升。球形纳米固体颗粒具有最高的热传输,而层状纳米固体颗粒表现出最低的热传输。随着纳米颗粒尺寸增大,模型的熵增加。当辐射流和普朗特 - 艾林变量 - II提高时也会出现类似的效果。