Suppr超能文献

Higher-rate relativistic quantum key distribution.

作者信息

Bebrov Georgi

机构信息

Telecommunications Department, Technical University of Varna, Varna, 9010, Bulgaria.

出版信息

Sci Rep. 2021 Dec 7;11(1):23543. doi: 10.1038/s41598-021-02739-5.

Abstract

One of the major problems in the field of quantum key distribution (QKD) is the low key rates at which the systems operate. The reasons for this are the processes used to ensure the key distribution itself: sifting, parameter estimation, key reconciliation, and privacy amplification. So, this reduction in the rate of communication is inherent to all existing quantum key distribution schemes. This paper is concerned with proposing a solution to mitigate the rate reduction of the so-called relativistic QKD. To mitigate the reduction, we introduce a modified relativistic QKD protocol, which is based on Mach-Zehnder interferometer being used as a probabilistic basis selection system (basis misalignment occurs between the parties in approximately half of the transferred qubits). The interferometric scheme allows the participating parties to correlate the mutual unbiased bases (MUBs) chosen by them. In this regard, a qubit could be used to transfer more than one bit of information. To be precise, by implementing the proposed interferometric scheme into a relativistic QKD protocol, a qubit is able to transfer two bits of information. This results in achieving a protocol, which is characterized with a greater rate of communication, two times greater than the usual rate. The modified protocol is proven to be secure against intercept-resend and collective attacks.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7361/8651778/0c506f3dc074/41598_2021_2739_Fig1_HTML.jpg

相似文献

1
Higher-rate relativistic quantum key distribution.
Sci Rep. 2021 Dec 7;11(1):23543. doi: 10.1038/s41598-021-02739-5.
2
More optimal relativistic quantum key distribution.
Sci Rep. 2022 Sep 13;12(1):15377. doi: 10.1038/s41598-022-15247-x.
3
Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.
Nature. 2018 May;557(7705):400-403. doi: 10.1038/s41586-018-0066-6. Epub 2018 May 2.
4
A Novel QKD Approach to Enhance IIOT Privacy and Computational Knacks.
Sensors (Basel). 2022 Sep 6;22(18):6741. doi: 10.3390/s22186741.
6
An Improved Slice Reconciliation Protocol for Continuous-Variable Quantum Key Distribution.
Entropy (Basel). 2021 Oct 9;23(10):1317. doi: 10.3390/e23101317.
7
Blind information reconciliation with variable step sizes for quantum key distribution.
Sci Rep. 2020 Jan 13;10(1):171. doi: 10.1038/s41598-019-56637-y.
8
Quantum key distribution with two-qubit quantum codes.
Phys Rev Lett. 2004 Feb 20;92(7):077902. doi: 10.1103/PhysRevLett.92.077902.
9
Unconditional security of a three state quantum key distribution protocol.
Phys Rev Lett. 2005 Feb 4;94(4):040503. doi: 10.1103/PhysRevLett.94.040503. Epub 2005 Jan 31.

引用本文的文献

1
More optimal relativistic quantum key distribution.
Sci Rep. 2022 Sep 13;12(1):15377. doi: 10.1038/s41598-022-15247-x.

本文引用的文献

2
Relativistic quantum key distribution system with one-way quantum communication.
Sci Rep. 2018 Apr 17;8(1):6102. doi: 10.1038/s41598-018-24533-6.
3
Measurement-device-independent quantum key distribution.
Phys Rev Lett. 2012 Mar 30;108(13):130503. doi: 10.1103/PhysRevLett.108.130503.
4
Device-independent security of quantum cryptography against collective attacks.
Phys Rev Lett. 2007 Jun 8;98(23):230501. doi: 10.1103/PhysRevLett.98.230501. Epub 2007 Jun 4.
5
Differential phase shift quantum key distribution.
Phys Rev Lett. 2002 Jul 15;89(3):037902. doi: 10.1103/PhysRevLett.89.037902. Epub 2002 Jun 27.
6
Quantum cryptography based on orthogonal states.
Phys Rev Lett. 1995 Aug 14;75(7):1239-1243. doi: 10.1103/PhysRevLett.75.1239.
7
Quantum cryptography without Bell's theorem.
Phys Rev Lett. 1992 Feb 3;68(5):557-559. doi: 10.1103/PhysRevLett.68.557.
8
Quantum cryptography using any two nonorthogonal states.
Phys Rev Lett. 1992 May 25;68(21):3121-3124. doi: 10.1103/PhysRevLett.68.3121.
9
Quantum cryptography based on Bell's theorem.
Phys Rev Lett. 1991 Aug 5;67(6):661-663. doi: 10.1103/PhysRevLett.67.661.
10
Quantum cryptography with coherent states.
Phys Rev A. 1995 Mar;51(3):1863-1869. doi: 10.1103/physreva.51.1863.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验