Suppr超能文献

在不使用量子中继器的情况下突破量子密钥分发的速率-距离限制。

Overcoming the rate-distance limit of quantum key distribution without quantum repeaters.

机构信息

Toshiba Research Europe, Cambridge, UK.

出版信息

Nature. 2018 May;557(7705):400-403. doi: 10.1038/s41586-018-0066-6. Epub 2018 May 2.

Abstract

Quantum key distribution (QKD) allows two distant parties to share encryption keys with security based on physical laws. Experimentally, QKD has been implemented via optical means, achieving key rates of 1.26 megabits per second over 50 kilometres of standard optical fibre and of 1.16 bits per hour over 404 kilometres of ultralow-loss fibre in a measurement-device-independent configuration . Increasing the bit rate and range of QKD is a formidable, but important, challenge. A related target, which is currently considered to be unfeasible without quantum repeaters, is overcoming the fundamental rate-distance limit of QKD . This limit defines the maximum possible secret key rate that two parties can distil at a given distance using QKD and is quantified by the secret-key capacity of the quantum channel that connects the parties. Here we introduce an alternative scheme for QKD whereby pairs of phase-randomized optical fields are first generated at two distant locations and then combined at a central measuring station. Fields imparted with the same random phase are 'twins' and can be used to distil a quantum key. The key rate of this twin-field QKD exhibits the same dependence on distance as does a quantum repeater, scaling with the square-root of the channel transmittance, irrespective of who (malicious or otherwise) is in control of the measuring station. However, unlike schemes that involve quantum repeaters, ours is feasible with current technology and presents manageable levels of noise even on 550 kilometres of standard optical fibre. This scheme is a promising step towards overcoming the rate-distance limit of QKD and greatly extending the range of secure quantum communications.

摘要

量子密钥分发(QKD)允许两个远程方使用基于物理定律的安全性共享加密密钥。在实验中,QKD 已经通过光学手段实现,在 50 公里标准光纤上实现了 1.26 兆比特每秒的密钥率,在测量设备独立配置下实现了 404 公里超低损耗光纤上 1.16 比特每小时的密钥率。提高 QKD 的比特率和距离是一项艰巨但重要的挑战。另一个相关目标是,在没有量子中继器的情况下,目前被认为是不可行的,即克服 QKD 的基本速率-距离限制。该限制定义了两个方在使用 QKD 时在给定距离上可以提取的最大可能秘密密钥速率,并由连接双方的量子信道的秘密密钥容量来量化。在这里,我们引入了一种替代的 QKD 方案,其中首先在两个远程位置生成相位随机化的光场对,然后在中央测量站进行组合。具有相同随机相位的场是“双胞胎”,可以用于提取量子密钥。这种双场 QKD 的密钥率与量子中继器的密钥率具有相同的距离依赖性,与信道传输率的平方根成比例,而与谁(恶意或其他)控制测量站无关。然而,与涉及量子中继器的方案不同,我们的方案使用当前技术是可行的,即使在 550 公里的标准光纤上,也能呈现出可管理的噪声水平。该方案是克服 QKD 的速率-距离限制并极大地扩展安全量子通信范围的有前途的一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验