Suppr超能文献

胚胎中 Tcf12 对小鼠冠状缝发育的需求。

Embryonic requirements for Tcf12 in the development of the mouse coronal suture.

机构信息

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA.

出版信息

Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199575. Epub 2022 Jan 4.

Abstract

A major feature of Saethre-Chotzen syndrome is coronal craniosynostosis, the fusion of the frontal and parietal bones at the coronal suture. It is caused by heterozygous loss-of-function mutations in either of the bHLH transcription factors TWIST1 and TCF12. Although compound heterozygous Tcf12; Twist1 mice display severe coronal synostosis, the individual role of Tcf12 had remained unexplored. Here, we show that Tcf12 controls several key processes in calvarial development, including the rate of frontal and parietal bone growth, and the boundary between sutural and osteogenic cells. Genetic analysis supports an embryonic requirement for Tcf12 in suture formation, as combined deletion of Tcf12 in embryonic neural crest and mesoderm, but not in postnatal suture mesenchyme, disrupts the coronal suture. We also detected asymmetric distribution of mesenchymal cells on opposing sides of the wild-type frontal and parietal bones, which prefigures later bone overlap at the sutures. In Tcf12 mutants, reduced asymmetry is associated with bones meeting end-on-end, possibly contributing to synostosis. Our results support embryonic requirements of Tcf12 in proper formation of the overlapping coronal suture.

摘要

Saethre-Chotzen 综合征的一个主要特征是冠状颅缝早闭,即额骨和顶骨在冠状缝处融合。它是由 TWIST1 和 TCF12 这两个 bHLH 转录因子中的任一杂合失活突变引起的。尽管 Tcf12; Twist1 双杂合突变小鼠表现出严重的冠状颅缝早闭,但 Tcf12 的个体作用仍未被探索。在这里,我们表明 Tcf12 控制颅骨发育的几个关键过程,包括额骨和顶骨生长的速度,以及缝和成骨细胞之间的边界。遗传分析支持 Tcf12 在缝合形成中的胚胎需求,因为 Tcf12 在胚胎神经嵴和中胚层中的联合缺失,但不在出生后的缝合间质中,会破坏冠状缝合。我们还检测到在野生型额骨和顶骨的相对侧上的间质细胞的不对称分布,这预示着后来在缝合处的骨重叠。在 Tcf12 突变体中,不对称性的减少与骨末端相接有关,可能导致颅缝早闭。我们的结果支持 Tcf12 在重叠冠状缝合的正确形成中的胚胎需求。

相似文献

1
Embryonic requirements for Tcf12 in the development of the mouse coronal suture.
Development. 2022 Jan 1;149(1). doi: 10.1242/dev.199575. Epub 2022 Jan 4.
5
Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis.
Hum Mol Genet. 2006 Apr 15;15(8):1319-28. doi: 10.1093/hmg/ddl052. Epub 2006 Mar 15.
6
The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis.
Curr Top Dev Biol. 2015;115:131-56. doi: 10.1016/bs.ctdb.2015.07.004. Epub 2015 Oct 1.
7
The developing mouse coronal suture at single-cell resolution.
Nat Commun. 2021 Aug 10;12(1):4797. doi: 10.1038/s41467-021-24917-9.
8
Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
Dev Biol. 2012 Aug 15;368(2):283-93. doi: 10.1016/j.ydbio.2012.05.026. Epub 2012 Jun 1.

引用本文的文献

2
Cellular transitions during cranial suture establishment in zebrafish.
Nat Commun. 2024 Aug 13;15(1):6948. doi: 10.1038/s41467-024-50780-5.
5
6
FGF signaling in cranial suture development and related diseases.
Front Cell Dev Biol. 2023 Jun 1;11:1112890. doi: 10.3389/fcell.2023.1112890. eCollection 2023.
7
Cranium growth, patterning and homeostasis.
Development. 2022 Nov 15;149(22). doi: 10.1242/dev.201017. Epub 2022 Nov 21.
8
The clinical manifestations, molecular mechanisms and treatment of craniosynostosis.
Dis Model Mech. 2022 Apr 1;15(4). doi: 10.1242/dmm.049390. Epub 2022 Apr 22.
9
The developing mouse coronal suture at single-cell resolution.
Nat Commun. 2021 Aug 10;12(1):4797. doi: 10.1038/s41467-021-24917-9.

本文引用的文献

1
The developing mouse coronal suture at single-cell resolution.
Nat Commun. 2021 Aug 10;12(1):4797. doi: 10.1038/s41467-021-24917-9.
2
Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis.
Cell. 2021 Jan 7;184(1):243-256.e18. doi: 10.1016/j.cell.2020.11.037.
3
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation.
Mol Cell Biol. 2020 May 14;40(11). doi: 10.1128/MCB.00663-19.
6
E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease.
Dev Cell. 2015 Nov 9;35(3):269-80. doi: 10.1016/j.devcel.2015.10.019.
7
A Genetic-Pathophysiological Framework for Craniosynostosis.
Am J Hum Genet. 2015 Sep 3;97(3):359-77. doi: 10.1016/j.ajhg.2015.07.006.
8
The suture provides a niche for mesenchymal stem cells of craniofacial bones.
Nat Cell Biol. 2015 Apr;17(4):386-96. doi: 10.1038/ncb3139. Epub 2015 Mar 23.
9
Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential.
Cell. 2015 Jan 15;160(1-2):269-84. doi: 10.1016/j.cell.2014.11.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验