豆科植物-根瘤菌共生可以在火星土壤模拟物上得到支持。
The legume-rhizobia symbiosis can be supported on Mars soil simulants.
机构信息
Department of Biology, University of Central Arkansas, Conway, AR, United States of America.
出版信息
PLoS One. 2021 Dec 8;16(12):e0259957. doi: 10.1371/journal.pone.0259957. eCollection 2021.
Legumes (soybeans, peas, lentils, etc.) play important roles in agriculture on Earth because of their food value and their ability to form a mutualistic beneficial association with rhizobia bacteria. In this association, the host plant benefits from atmospheric nitrogen fixation by rhizobia. The presence of nitrogen in the Mars atmosphere offers the possibility to take advantage of this important plant-microbe association. While some studies have shown that Mars soil simulants can support plant growth, none have investigated if these soils can support the legume-rhizobia symbiosis. In this study, we investigated the establishment of the legume-rhizobia symbiosis on different Mars soil simulants (different grades of the Mojave Mars Simulant (MMS)-1: Coarse, Fine, Unsorted, Superfine, and the MMS-2 simulant). We used the model legume, Medicago truncatula, and its symbiotic partners, Sinorhizobium meliloti and Sinorhizobium medicae, in these experiments. Our results show that root nodules could develop on M. truncatula roots when grown on these Mars soil simulants and were comparable to those formed on plants that were grown on sand. We also detected nifH (a reporter gene for nitrogen fixation) expression inside these nodules. Our results indicate that the different Mars soil simulants used in this study can support legume-rhizobia symbiosis. While the average number of lateral roots and nodule numbers were comparable on plants grown on the different soil simulants, total plant mass was higher in plants grown on MMS-2 soil than on MMS-1 soil and its variants. Our results imply that the chemical composition of the simulants is more critical than their grain size for plant mass. Based on these results, we recommend that the MMS-2 Superfine soil simulant is a better fit than the MMS-1 soil and it's variants for future studies. Our findings can serve as an excellent resource for future studies investigating beneficial plant-microbe associations for sustainable agriculture on Mars.
豆类(大豆、豌豆、扁豆等)因其食用价值和与根瘤菌形成互利共生关系的能力,在地球上的农业中起着重要作用。在这种共生关系中,宿主植物从根瘤菌的大气固氮中受益。火星大气中氮的存在提供了利用这一重要植物-微生物共生关系的可能性。虽然一些研究表明火星土壤模拟物可以支持植物生长,但没有研究表明这些土壤是否可以支持豆科植物-根瘤菌共生关系。在这项研究中,我们研究了豆科植物-根瘤菌共生关系在不同火星土壤模拟物(不同等级的莫哈韦火星模拟物(MMS)-1:粗砂、细砂、未分选砂、超细砂和 MMS-2 模拟物)上的建立情况。我们在这些实验中使用了模式豆科植物蒺藜苜蓿及其共生伙伴根瘤菌属苜蓿和根瘤菌属 medicae。我们的结果表明,当在这些火星土壤模拟物上生长时,蒺藜苜蓿的根可以发育出根瘤,并且与在沙子上生长的植物形成的根瘤相当。我们还在这些根瘤中检测到了 nifH(固氮的报告基因)的表达。我们的结果表明,本研究中使用的不同火星土壤模拟物可以支持豆科植物-根瘤菌共生关系。虽然在不同土壤模拟物上生长的植物的侧根和根瘤数量相当,但在 MMS-2 土壤上生长的植物的总植物质量高于在 MMS-1 土壤及其变体上生长的植物。我们的结果表明,对于植物质量而言,模拟物的化学成分比其粒度更为关键。基于这些结果,我们建议 MMS-2 超细土壤模拟物比 MMS-1 土壤及其变体更适合未来的研究。我们的发现可以为未来在火星上进行可持续农业的有益植物-微生物共生关系的研究提供极好的资源。