Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1.
Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2018015118.
Reduction of N gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N fixation once inside the plant cells. Many bacterial genes involved in the rhizobia-legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, () , using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete , , and modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium's competitiveness for nodulation and the effectiveness of particular rhizobia-plant symbioses.
在豆科植物的根瘤中,将 N 气体还原为氨是可持续农业系统的关键组成部分。根瘤是豆科植物与称为根瘤菌的细菌共生的结果。共生体的两个伙伴都在建立成功的共生关系和固氮中发挥着积极作用:虽然根瘤的发育主要由植物控制,但根瘤菌诱导根瘤形成,一旦进入植物细胞就进行入侵和固氮。许多与根瘤菌-豆科植物共生有关的细菌基因已被发现,人们对工程共生体以包括玉米、小麦和水稻等主要非豆科作物很感兴趣。我们试图鉴定并组合共生所必需和足够的最小细菌基因补体。我们使用一种背景菌株分析了一种模式根瘤菌(),该菌株去除了 1.35-Mb 的共生巨质粒 pSymA。代表 pSymA 的 162kb 的三个区域足以恢复与紫花苜蓿的完整固氮共生,并且该基因补体的靶向组装实现了高水平的共生固氮。由此产生的基因集仅包含 1,290 个 pSymA 蛋白编码基因中的 58 个。为了生成未来合成操作的平台,最小共生基因被重新组织成三个离散的、和模块。这些构建体将有助于针对扩大共生关系到其他植物伙伴的定向研究。它们还可以采用正向方法来鉴定可能对共生不重要但调节根瘤菌对结瘤的竞争力和特定根瘤菌-植物共生的有效性的遗传成分。