Suppr超能文献

新型优先评估策略用于评估非目标筛查中存档白尾海雕肌肉组织的时间趋势。

Novel prioritisation strategies for evaluation of temporal trends in archived white-tailed sea eagle muscle tissue in non-target screening.

机构信息

Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.

Environmental Institute, Okruzná 784/42, 97241 Koš, Slovak Republic; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Greece.

出版信息

J Hazard Mater. 2022 Feb 15;424(Pt A):127331. doi: 10.1016/j.jhazmat.2021.127331. Epub 2021 Sep 25.

Abstract

Environmental monitoring studies based on target analysis capture only a small fraction of contaminants of emerging concern (CECs) and miss pollutants potentially harmful to wildlife. Environmental specimen banks, with their archived samples, provide opportunities to identify new CECs by temporal trend analysis and non-target screening. In this study, archived white-tailed sea eagle (Haliaeetus albicilla) muscle tissue was analysed by non-targeted high-resolution mass spectrometry. Univariate statistical tests (Mann-Kendall and Spearman rank) for temporal trend analysis were applied as prioritisation methods. A workflow for non-target data was developed and validated using an artificial time series spiked at five levels with gradient concentrations of selected CECs (n = 243). Pooled eagle muscle tissues collected 1965-2017 were then investigated with an eight-point time series using the validated screening workflow. Following peak detection, peak alignment, and blank subtraction, 14 409 features were considered for statistical analysis. Prioritisation by time-trend analysis detected 207 features with increasing trends. Following unequivocal molecular formula assignment to prioritised features and further elucidation with MetFrag and EU Massbank, 13 compounds were tentatively identified, of which four were of anthropogenic origin. These results show that it is possible to prioritise new CECs in archived biological samples using univariate statistical approaches.

摘要

基于目标分析的环境监测研究仅能捕捉到一小部分新兴关注污染物(CECs),而错过对野生动物潜在有害的污染物。环境标本库通过其存档样本,提供了通过时间趋势分析和非目标筛选来识别新 CECs 的机会。在这项研究中,通过非靶向高分辨率质谱分析了存档的白尾海雕(Haliaeetus albicilla)肌肉组织。应用单变量统计检验(Mann-Kendall 和 Spearman 秩)进行时间趋势分析作为优先排序方法。使用人工时间序列(用选定的 CEC 以梯度浓度在五个水平上进行加标)开发并验证了非目标数据的工作流程(n = 243)。然后,使用经过验证的筛选工作流程,对 1965-2017 年收集的鹰肌肉组织进行了八点时间序列研究。在进行峰检测、峰对齐和空白扣除后,考虑了 14409 个特征进行统计分析。通过时间趋势分析进行优先级排序,检测到 207 个具有上升趋势的特征。对优先特征进行明确的分子公式赋值,并使用 MetFrag 和 EU Massbank 进一步阐明后,暂定鉴定出 13 种化合物,其中 4 种具有人为来源。这些结果表明,使用单变量统计方法可以在存档的生物样本中优先考虑新的 CECs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验