School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, PR China.
Wuxi Little Swan Electric Co., Ltd., No. 18 South Changjiang RD, National High-tech Development Zone, Wuxi, PR China.
J Hazard Mater. 2022 Feb 15;424(Pt A):127384. doi: 10.1016/j.jhazmat.2021.127384. Epub 2021 Sep 30.
Perovskites (the general formula of ABO) with versatile substrates can serve as desirable catalysts to initiate advanced oxidation processes (AOPs) for environmental remediation. However, the knowledge regarding the active centers remains piecemeal and unclear, such as how the redox metal centers of B site, inert metals of A site, oxygen vacancies, and direct oxidation of catalysts govern the chemical degradation of aqueous pollutants. This study aimed to identify principal alternations in physicochemical and electrical properties of ABO-based perovskites modified with partial/overall substitution at A/B sites and synthesized at different conditions. In order to probe varied catalytic activity of these catalysts, ofloxacin (OFX) was used as a model micro-pollutant. Results showed that the OFX degradation by activation of peroxymonosulfate (PMS) with LaFeO perovskite was favored by the Sr substitution at A site, Cu substitution at B site, and increasing calcination temperature. Evolution of O, OH and SO have proven for efficient OFX oxidation, as evidenced by results from in-situ electron paramagnetic resonance (EPR) analyses and quenching tests. Specifically, the introduction of Sr at A site can facilitate PMS self-decomposition to produce more O due to the increased abundance of surface oxygen vacancies. In contrast, the Cu substitution at B site improved the surface oxygen vacancies, as well as the electrical conductivity, which can further accelerate OH and SO generation for the OFX degradation. This study provides deeper insights into the underlying mechanisms governing the catalytic activity of perovskites. These findings build a basis for better decontamination of hazardous environmental organic pollutants.
具有多功能衬底的钙钛矿(ABO 的通式)可用作理想的催化剂,以引发高级氧化工艺(AOP)用于环境修复。然而,关于活性中心的知识仍然零碎且不清楚,例如 B 位的氧化还原金属中心、A 位的惰性金属、氧空位以及催化剂的直接氧化如何控制水相污染物的化学降解。本研究旨在确定 A/B 位部分/全部取代以及不同条件下合成的 ABO 基钙钛矿的物理化学和电学性质的主要变化。为了探究这些催化剂的不同催化活性,以氧氟沙星(OFX)作为模型微污染物。结果表明,LaFeO 钙钛矿通过激活过一硫酸盐(PMS)降解 OFX 受到 A 位 Sr 取代、B 位 Cu 取代和提高煅烧温度的促进。O、OH 和 SO 的演变证明了 OFX 的有效氧化,这可以通过原位电子顺磁共振(EPR)分析和淬灭实验的结果证明。具体而言,A 位 Sr 的引入可以促进 PMS 自分解,由于表面氧空位的增加而产生更多的 O。相比之下,B 位 Cu 的取代可以改善表面氧空位和电导率,从而进一步加速 OH 和 SO 的生成,用于 OFX 的降解。本研究深入了解了钙钛矿催化活性的潜在机制。这些发现为更好地去除环境中有害有机污染物奠定了基础。