Suppr超能文献

Dynamics and phase behavior of two-dimensional size-asymmetric binary mixtures of core-softened colloids.

作者信息

Padilla Luis A, León-Islas Andres A, Funkhouser Jesse, Armas-Pérez Julio C, Ramírez-Hernández Abelardo

机构信息

Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA.

División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, Colonia Lomas del Campestre, CP 37150 León, Guanajuato, Mexico.

出版信息

J Chem Phys. 2021 Dec 7;155(21):214901. doi: 10.1063/5.0067449.

Abstract

The self-assembly of binary colloidal mixtures provides a bottom-up approach to create novel functional materials. To elucidate the effect of composition, temperature, and pressure on the self-assembly behavior of size-asymmetric mixtures, we performed extensive dynamics simulations of a simple model of polymer-grafted colloids. We have used a core-softened interaction potential and extended it to represent attractive interactions between unlike colloids and repulsions between like colloids. Our study focused on size-asymmetric mixtures where the ratio between the sizes of the colloidal cores was fixed at σσ=0.5. We have performed extensive simulations in the isothermal-isobaric and canonical (NVT) ensembles to elucidate the phase behavior and dynamics of mixtures with different stoichiometric ratios. Our simulation results uncovered a rich phase behavior, including the formation of hierarchical structures with many potential applications. For compositions where small colloids are the majority, sublattice melting occurs for a wide range of densities. Under these conditions, large colloids form a well-defined lattice, whereas small colloids can diffuse through the system. As the temperature is decreased, the small colloids localize, akin to a metal-insulator transition, with the small colloids playing a role similar to electrons. Our results are summarized in terms of phase diagrams.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验