Suppr超能文献

金属污染地区(俄罗斯南乌拉尔)木本植被的生物量和死亡量

Biomass and mortmass of woody vegetation in metal-contaminated areas (Southern Urals, Russia).

作者信息

Bergman Igor, Nesterkov Alexey

机构信息

Institute of plant and animal ecology, UB RAS, Ekaterinburg, Russia Institute of plant and animal ecology, UB RAS Ekaterinburg Russia.

出版信息

Biodivers Data J. 2021 Nov 29;9:e75510. doi: 10.3897/BDJ.9.e75510. eCollection 2021.

Abstract

BACKGROUND

Since the mid-2000s, long-term monitoring of various components of natural ecosystems under conditions of industrial pollution has been carried out in the Southern Urals. As a part of these monitoring programmes, the data on various components of biota in different biotopes, collected with different methods and in different time intervals, continue to be gathered. In addition, data collected through these monitoring programmes can also be used to study the local biodiversity of non-polluted areas.In 2012, in the vicinity of the Karabash Copper Smelter, a study of communities of small mammals was carried out, considering the heterogeneity of their habitats. Within the framework of this project, we presented a detailed description of the state of woody vegetation in the study area.

NEW INFORMATION

The dataset (available from the GBIF network at https://www.gbif.org/dataset/61384edd-2d0a-437b-8cf0-ff4d2dfcc0da) includes the results of an assessment of the woody vegetation biomass at seven habitats (pine, birch and floodplain forests, reed swamp, sparse birch stand, marshy meadow and dump of household waste) of areas with different levels of industrial pollution in the vicinities of the Karabash, the Southern Urals. Karabash Copper Smelter (KCS) is one of Russia's most significant point polluters; the main components of its emissions are heavy metals, dust and sulphur dioxide. Parameters of woody vegetation (diameter at breast height, diameter at root collar level and biomass) were estimated for seven forest elements (forest stand, subcanopy (undergrowth and underwood), half-dead tree of a forest stand and four types of coarse woody debris (downed bole, fragment of downed bole, standing dead tree and stump)) at 41 sampling plots (20 at unpolluted and 21 at polluted areas) and 165 subplots (81 and 84, respectively). The dataset includes 411 sampling events (estimation events of the forest elements at sampling plots and subplots), corresponding to 5786 occurrences (estimations of the woody vegetation components) observed during July 2012. For most woody vegetation components (72%), an estimate of the above-ground phytomass is given. For each sampling event, information on the presence or absence of woody vegetation species at the considered habitats is provided (a total of 1479 occurrences with status "absent"). The dataset can be used for environmental monitoring, sustainable forest management, modelling forest productivity considering global changes, studying the structure and biodiversity of forest cover and assessing forests' carbon-sequestration capacity. In addition, the dataset provides information about different forest ecosystems under the influence of strong industrial pollution.

摘要

背景

自21世纪中叶以来,南乌拉尔地区一直在对受工业污染影响的自然生态系统的各个组成部分进行长期监测。作为这些监测计划的一部分,通过不同方法、在不同时间间隔收集的不同生物群落中生物群各组成部分的数据仍在持续积累。此外,通过这些监测计划收集的数据还可用于研究未受污染地区的当地生物多样性。2012年,在卡拉巴赫铜冶炼厂附近,考虑到小型哺乳动物栖息地的异质性,开展了对小型哺乳动物群落的研究。在该项目框架内,我们对研究区域内木本植被的状况进行了详细描述。

新信息

该数据集(可从GBIF网络https://www.gbif.org/dataset/61384edd-2d0a-437b-8cf0-ff4d2dfcc0da获取)包含了对南乌拉尔卡拉巴赫附近不同工业污染水平地区七个栖息地(松树、白桦和河漫滩森林、芦苇沼泽、稀疏白桦林、沼泽草甸和生活垃圾堆)木本植被生物量的评估结果。卡拉巴赫铜冶炼厂(KCS)是俄罗斯最重要的点污染源之一;其排放的主要成分是重金属、粉尘和二氧化硫。在41个采样地块(20个位于未受污染地区,21个位于受污染地区)和165个子地块(分别为81个和84个)上,对七种森林要素(林分、亚林冠层(下层木和林下灌丛)、林分中的半死树以及四种粗木质残体类型(倒伏树干、倒伏树干片段、立枯树和树桩))的木本植被参数(胸径、根颈水平直径和生物量)进行了估算。该数据集包括411次采样事件(采样地块和子地块上森林要素的估算事件),对应于2012年7月观测到的5786次出现情况(木本植被组成部分的估算)。对于大多数木本植被组成部分(72%),给出了地上植物生物量的估算值。对于每次采样事件,提供了在所考虑栖息地木本植被物种存在与否的信息(共有1479次出现情况,状态为“不存在”)。该数据集可用于环境监测、可持续森林管理、考虑全球变化的森林生产力建模、研究森林覆盖的结构和生物多样性以及评估森林的碳固存能力。此外,该数据集还提供了受强烈工业污染影响的不同森林生态系统的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4598/8648690/973dbcf60b5a/bdj-09-e75510-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验