Pfaffenbach Erich S, Carvalho William O F, Oliveira Osvaldo N, Mejía-Salazar Jorge Ricardo
National Institute of Telecommunications (Inatel), 37540-000 Santa Rita do Sapucaí, MG, Brazil.
Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil.
ACS Appl Mater Interfaces. 2021 Dec 22;13(50):60672-60677. doi: 10.1021/acsami.1c19194. Epub 2021 Dec 9.
Nanostructures exhibiting large transverse magneto-optical Kerr effect (TMOKE) are required for magnetoplasmonic biosensing if the aim is the minituarization and integration into microfluidic devices. In this work, we present a general strategy to design nanoarchitectures with enhanced TMOKE, which consist of an arrangement of gold ribs deposited on an magneto-optical (MO) dielectric slab of Bi:YIG (bismuth-substituted yttrium iron garnet) with a SiO substrate surrounded by water. Using the finite element method (FEM), we demonstrate numerically that the near-zero-transmittance condition is the most important requirement for high TMOKE values. This can be reached through geometric optimization of the nanoarchitecture by tuning the period, height, and width of the grating, thus leading to resonances at wavelengths where the MO dielectric slab has high MO activity. We also show that the TMOKE amplitude can be further increased if losses in metal ribs are reduced. For a magnetoplasmonic grating with optimized geometry, we demonstrated the potential detection of biologically relevant analytes with sensitivity in the order of 10 nm/RIU (refractive index unit). Since the nanoarchitecture proposed is experimentally feasible with, e.g., nanolithography techniques, one may expect that the design strategy may inspire the development of efficient magnetoplasmonic sensing platforms.
如果目标是实现微型化并集成到微流控设备中,那么磁等离子体生物传感就需要具有大横向磁光克尔效应(TMOKE)的纳米结构。在这项工作中,我们提出了一种设计具有增强TMOKE的纳米结构的通用策略,该结构由沉积在Bi:YIG(铋取代钇铁石榴石)磁光(MO)介质平板上的金肋条排列组成,SiO衬底被水包围。使用有限元方法(FEM),我们通过数值证明了近零透射率条件是获得高TMOKE值的最重要要求。这可以通过调整光栅的周期、高度和宽度对纳米结构进行几何优化来实现,从而在MO介质平板具有高MO活性的波长处产生共振。我们还表明,如果减少金属肋条中的损耗,TMOKE幅度可以进一步增加。对于具有优化几何结构的磁等离子体光栅,我们展示了检测生物相关分析物的潜力,灵敏度约为10 nm/RIU(折射率单位)。由于所提出的纳米结构在实验上是可行的,例如通过纳米光刻技术,人们可以预期这种设计策略可能会激发高效磁等离子体传感平台的发展。