文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用主题建模对电子健康记录进行无监督标注,以识别英国犬群中的疾病爆发。

Using topic modelling for unsupervised annotation of electronic health records to identify an outbreak of disease in UK dogs.

机构信息

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, Wirral, United Kingdom.

Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.

出版信息

PLoS One. 2021 Dec 9;16(12):e0260402. doi: 10.1371/journal.pone.0260402. eCollection 2021.


DOI:10.1371/journal.pone.0260402
PMID:34882714
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659617/
Abstract

A key goal of disease surveillance is to identify outbreaks of known or novel diseases in a timely manner. Such an outbreak occurred in the UK associated with acute vomiting in dogs between December 2019 and March 2020. We tracked this outbreak using the clinical free text component of anonymised electronic health records (EHRs) collected from a sentinel network of participating veterinary practices. We sourced the free text (narrative) component of each EHR supplemented with one of 10 practitioner-derived main presenting complaints (MPCs), with the 'gastroenteric' MPC identifying cases involved in the disease outbreak. Such clinician-derived annotation systems can suffer from poor compliance requiring retrospective, often manual, coding, thereby limiting real-time usability, especially where an outbreak of a novel disease might not present clinically as a currently recognised syndrome or MPC. Here, we investigate the use of an unsupervised method of EHR annotation using latent Dirichlet allocation topic-modelling to identify topics inherent within the clinical narrative component of EHRs. The model comprised 30 topics which were used to annotate EHRs spanning the natural disease outbreak and investigate whether any given topic might mirror the outbreak time-course. Narratives were annotated using the Gensim Library LdaModel module for the topic best representing the text within them. Counts for narratives labelled with one of the topics significantly matched the disease outbreak based on the practitioner-derived 'gastroenteric' MPC (Spearman correlation 0.978); no other topics showed a similar time course. Using artificially injected outbreaks, it was possible to see other topics that would match other MPCs including respiratory disease. The underlying topics were readily evaluated using simple word-cloud representations and using a freely available package (LDAVis) providing rapid insight into the clinical basis of each topic. This work clearly shows that unsupervised record annotation using topic modelling linked to simple text visualisations can provide an easily interrogable method to identify and characterise outbreaks and other anomalies of known and previously un-characterised diseases based on changes in clinical narratives.

摘要

疾病监测的一个主要目标是及时发现已知或新型疾病的暴发。2019 年 12 月至 2020 年 3 月期间,英国发生了一起与犬只急性呕吐有关的此类暴发事件。我们使用来自参与兽医实践的监测网络收集的匿名电子健康记录 (EHR) 的临床自由文本组件来跟踪此暴发。我们从每个 EHR 中获取自由文本(叙述)组件,并补充了 10 个临床医生提供的主要就诊症状(MPC)之一,其中“胃肠道”MPC 可识别出与疾病暴发相关的病例。这种由临床医生提供的注释系统可能存在合规性差的问题,需要进行回顾性、通常是手动的编码,从而限制了实时可用性,特别是在新型疾病暴发时,疾病可能不会表现出当前公认的综合征或 MPC。在这里,我们研究了使用无监督方法对 EHR 进行注释,使用潜在狄利克雷分配主题建模来识别 EHR 临床叙述组件中固有的主题。该模型由 30 个主题组成,用于注释跨越自然疾病暴发的 EHR,并调查是否存在任何给定主题可能反映暴发时间进程。使用 Gensim Library LdaModel 模块对主题进行注释,该模块用于对主题进行最佳标注。根据临床医生提供的“胃肠道”MPC,使用主题标注的叙述计数与疾病暴发显著匹配(Spearman 相关性 0.978);没有其他主题显示出类似的时间过程。使用人为注入的暴发,可以看到其他主题与其他 MPC 匹配,包括呼吸道疾病。使用简单的词云表示法可以轻松评估基础主题,并使用免费提供的软件包(LDAVis)快速了解每个主题的临床基础。这项工作清楚地表明,使用主题建模进行无监督记录注释,并结合简单的文本可视化,可以提供一种易于查询的方法,根据临床叙述的变化,识别和描述已知和以前未描述疾病的暴发和其他异常情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/93b13ae24a16/pone.0260402.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/a75edcc48c64/pone.0260402.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/4f5ec1516250/pone.0260402.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/17359fad9e37/pone.0260402.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/345b70f65910/pone.0260402.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/6ada639e67d7/pone.0260402.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/0d072ce857f1/pone.0260402.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/93b13ae24a16/pone.0260402.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/a75edcc48c64/pone.0260402.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/4f5ec1516250/pone.0260402.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/17359fad9e37/pone.0260402.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/345b70f65910/pone.0260402.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/6ada639e67d7/pone.0260402.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/0d072ce857f1/pone.0260402.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3a0/8659617/93b13ae24a16/pone.0260402.g007.jpg

相似文献

[1]
Using topic modelling for unsupervised annotation of electronic health records to identify an outbreak of disease in UK dogs.

PLoS One. 2021

[2]
Outbreak of Severe Vomiting in Dogs Associated with a Canine Enteric Coronavirus, United Kingdom.

Emerg Infect Dis. 2021-2

[3]
Emerging Variants of Canine Enteric Coronavirus Associated with Outbreaks of Gastroenteric Disease.

Emerg Infect Dis. 2024-6

[4]
Surveillance of a vomiting outbreak in dogs in the UK using owner-derived and internet search data.

Vet Rec. 2021-11

[5]
Small animal disease surveillance 2020/21: SARS-CoV-2, syndromic surveillance and an outbreak of acute vomiting in UK dogs.

Vet Rec. 2021-4

[6]
Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records.

J Biomed Inform. 2020-2

[7]
[First description of an outbreak of acute canine hemorrhagic gastroenteritis in Costa Rica].

Rev Latinoam Microbiol. 1984

[8]
Gastroenteritis outbreak associated with faecal shedding of canine norovirus in a Portuguese kennel following introduction of imported dogs from Russia.

Transbound Emerg Dis. 2011-12-11

[9]
Development of processes allowing near real-time refinement and validation of triage tools during the early stage of an outbreak in readiness for surge: the FLU-CATs Study.

Health Technol Assess. 2015-10

[10]
Pilot study of the financial and practice protocol impacts of canine influenza virus (H3N2) outbreaks in example veterinary practices.

Prev Vet Med. 2018-3-1

引用本文的文献

[1]
Secure latent Dirichlet allocation.

Front Digit Health. 2025-7-24

[2]
Text mining for disease surveillance in veterinary clinical data: part two, training computers to identify features in clinical text.

Front Vet Sci. 2024-8-22

[3]
A GPT-based EHR modeling system for unsupervised novel disease detection.

J Biomed Inform. 2024-9

[4]
Mapping the Bibliometrics Landscape of AI in Medicine: Methodological Study.

J Med Internet Res. 2023-12-8

[5]
PetBERT: automated ICD-11 syndromic disease coding for outbreak detection in first opinion veterinary electronic health records.

Sci Rep. 2023-10-21

本文引用的文献

[1]
Outbreak of Severe Vomiting in Dogs Associated with a Canine Enteric Coronavirus, United Kingdom.

Emerg Infect Dis. 2021-2

[2]
Possible cause of outbreak of prolific vomiting in dogs.

Vet Rec. 2020-3-14

[3]
Prolific vomiting in dogs.

Vet Rec. 2020-2-15

[4]
A real-time spatio-temporal syndromic surveillance system with application to small companion animals.

Sci Rep. 2019-11-28

[5]
Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes.

J Biomed Semantics. 2019-11-12

[6]
Detecting false-positive disease references in veterinary clinical notes without manual annotations.

NPJ Digit Med. 2019-5-3

[7]
Using topic modeling to infer the emotional state of people living with Parkinson's disease.

Assist Technol. 2021-5-4

[8]
Clinical text classification with rule-based features and knowledge-guided convolutional neural networks.

BMC Med Inform Decis Mak. 2019-4-4

[9]
Machine learning in medicine: a practical introduction.

BMC Med Res Methodol. 2019-3-19

[10]
Coughing in dogs: what is the evidence for and against a cardiac cough?

J Small Anim Pract. 2019-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索