文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在医学中的文献计量学图谱绘制:方法研究。

Mapping the Bibliometrics Landscape of AI in Medicine: Methodological Study.

机构信息

Institute for Entrepreneurship, University of Münster, Münster, Germany.

Institute of General Practice and Family Medicine, Ruhr University Bochum, Bochum, Germany.

出版信息

J Med Internet Res. 2023 Dec 8;25:e45815. doi: 10.2196/45815.


DOI:10.2196/45815
PMID:38064255
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10746970/
Abstract

BACKGROUND: Artificial intelligence (AI), conceived in the 1950s, has permeated numerous industries, intensifying in tandem with advancements in computing power. Despite the widespread adoption of AI, its integration into medicine trails other sectors. However, medical AI research has experienced substantial growth, attracting considerable attention from researchers and practitioners. OBJECTIVE: In the absence of an existing framework, this study aims to outline the current landscape of medical AI research and provide insights into its future developments by examining all AI-related studies within PubMed over the past 2 decades. We also propose potential data acquisition and analysis methods, developed using Python (version 3.11) and to be executed in Spyder IDE (version 5.4.3), for future analogous research. METHODS: Our dual-pronged approach involved (1) retrieving publication metadata related to AI from PubMed (spanning 2000-2022) via Python, including titles, abstracts, authors, journals, country, and publishing years, followed by keyword frequency analysis and (2) classifying relevant topics using latent Dirichlet allocation, an unsupervised machine learning approach, and defining the research scope of AI in medicine. In the absence of a universal medical AI taxonomy, we used an AI dictionary based on the European Commission Joint Research Centre AI Watch report, which emphasizes 8 domains: reasoning, planning, learning, perception, communication, integration and interaction, service, and AI ethics and philosophy. RESULTS: From 2000 to 2022, a comprehensive analysis of 307,701 AI-related publications from PubMed highlighted a 36-fold increase. The United States emerged as a clear frontrunner, producing 68,502 of these articles. Despite its substantial contribution in terms of volume, China lagged in terms of citation impact. Diving into specific AI domains, as the Joint Research Centre AI Watch report categorized, the learning domain emerged dominant. Our classification analysis meticulously traced the nuanced research trajectories across each domain, revealing the multifaceted and evolving nature of AI's application in the realm of medicine. CONCLUSIONS: The research topics have evolved as the volume of AI studies increases annually. Machine learning remains central to medical AI research, with deep learning expected to maintain its fundamental role. Empowered by predictive algorithms, pattern recognition, and imaging analysis capabilities, the future of AI research in medicine is anticipated to concentrate on medical diagnosis, robotic intervention, and disease management. Our topic modeling outcomes provide a clear insight into the focus of AI research in medicine over the past decades and lay the groundwork for predicting future directions. The domains that have attracted considerable research attention, primarily the learning domain, will continue to shape the trajectory of AI in medicine. Given the observed growing interest, the domain of AI ethics and philosophy also stands out as a prospective area of increased focus.

摘要

背景:人工智能(AI)诞生于 20 世纪 50 年代,现已广泛应用于众多行业,并随着计算能力的进步而不断发展。尽管 AI 已得到广泛应用,但它在医学领域的应用仍落后于其他领域。然而,医学 AI 研究取得了显著增长,引起了研究人员和从业者的极大关注。

目的:在缺乏现有框架的情况下,本研究通过检查过去 20 年在 PubMed 中所有与 AI 相关的研究,旨在概述当前医学 AI 研究的现状,并为其未来发展提供见解。我们还提出了潜在的数据采集和分析方法,这些方法使用 Python(版本 3.11)开发,并将在 Spyder IDE(版本 5.4.3)中执行,用于未来类似的研究。

方法:我们采用了双管齐下的方法,(1)通过 Python 从 PubMed 中检索与 AI 相关的出版物元数据(2000-2022 年),包括标题、摘要、作者、期刊、国家和出版年份,然后进行关键词频率分析;(2)使用无监督机器学习方法——潜在狄利克雷分配(Latent Dirichlet Allocation)对相关主题进行分类,并定义 AI 在医学中的研究范围。由于缺乏通用的医学 AI 分类法,我们使用了基于欧洲委员会联合研究中心 AI Watch 报告的 AI 词典,该词典强调了 8 个领域:推理、规划、学习、感知、通信、集成和交互、服务以及 AI 伦理和哲学。

结果:2000 年至 2022 年,对来自 PubMed 的 307701 篇 AI 相关出版物进行了全面分析,结果显示 AI 相关出版物的数量增加了 36 倍。美国显然处于领先地位,发表了其中的 68502 篇文章。尽管中国在数量上做出了巨大贡献,但在引用影响力方面却落后了。深入研究特定的 AI 领域,正如联合研究中心的 AI Watch 报告所分类的那样,学习领域占据主导地位。我们的分类分析细致地追踪了每个领域的细微研究轨迹,揭示了 AI 在医学领域应用的多面性和不断发展的本质。

结论:随着 AI 研究每年的数量不断增加,研究主题也在不断演变。机器学习仍然是医学 AI 研究的核心,深度学习预计将保持其基本作用。借助预测算法、模式识别和成像分析能力,医学 AI 研究的未来有望集中在医学诊断、机器人干预和疾病管理上。我们的主题建模结果为过去几十年医学 AI 研究的重点提供了清晰的见解,并为预测未来方向奠定了基础。吸引了大量研究关注的领域,主要是学习领域,将继续塑造 AI 在医学中的轨迹。鉴于观察到的兴趣不断增长,AI 伦理和哲学领域也作为一个有前途的关注领域脱颖而出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/6d358184f587/jmir_v25i1e45815_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/f300bfb54ffd/jmir_v25i1e45815_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/69b7f1bfda03/jmir_v25i1e45815_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/96cd170a8c9c/jmir_v25i1e45815_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/e47f95ea2268/jmir_v25i1e45815_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/a5e191d7aa70/jmir_v25i1e45815_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/ad381bf7f9dc/jmir_v25i1e45815_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/d301f9c4c81b/jmir_v25i1e45815_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/922960e68e77/jmir_v25i1e45815_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/87db31ec8b64/jmir_v25i1e45815_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/6d358184f587/jmir_v25i1e45815_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/f300bfb54ffd/jmir_v25i1e45815_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/69b7f1bfda03/jmir_v25i1e45815_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/96cd170a8c9c/jmir_v25i1e45815_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/e47f95ea2268/jmir_v25i1e45815_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/a5e191d7aa70/jmir_v25i1e45815_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/ad381bf7f9dc/jmir_v25i1e45815_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/d301f9c4c81b/jmir_v25i1e45815_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/922960e68e77/jmir_v25i1e45815_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/87db31ec8b64/jmir_v25i1e45815_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/324b/10746970/6d358184f587/jmir_v25i1e45815_fig10.jpg

相似文献

[1]
Mapping the Bibliometrics Landscape of AI in Medicine: Methodological Study.

J Med Internet Res. 2023-12-8

[2]
Application of convolutional neural networks in medical images: a bibliometric analysis.

Quant Imaging Med Surg. 2024-5-1

[3]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[4]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

[5]
Navigating the AI frontiers in cardiovascular research: a bibliometric exploration and topic modeling.

Front Cardiovasc Med. 2024-1-3

[6]
Medical Education and Artificial Intelligence: Web of Science-Based Bibliometric Analysis (2013-2022).

JMIR Med Educ. 2024-10-10

[7]
The Current Research Landscape of the Application of Artificial Intelligence in Managing Cerebrovascular and Heart Diseases: A Bibliometric and Content Analysis.

Int J Environ Res Public Health. 2019-7-29

[8]
Artificial Intelligence in Intensive Care Medicine: Bibliometric Analysis.

J Med Internet Res. 2022-11-30

[9]
Trends and statistics of artificial intelligence and radiomics research in Radiology, Nuclear Medicine, and Medical Imaging: bibliometric analysis.

Eur Radiol. 2023-11

[10]
Modeling the Research Landscapes of Artificial Intelligence Applications in Diabetes (GAP).

Int J Environ Res Public Health. 2020-3-17

引用本文的文献

[1]
Machine Learning in Tuberculosis Research: A Global Bibliometric Analysis of Diagnostic, Prognostic, and Drug Discovery Trends.

Ther Innov Regul Sci. 2025-8-21

[2]
Bibliometric analysis of immunogenic cell death in hepatocellular carcinoma.

Discov Oncol. 2025-8-17

[3]
Mapping two decades of research in rheumatology-specific journals: a topic modeling analysis with BERTopic.

Ther Adv Musculoskelet Dis. 2024-12-23

[4]
A Glimpse of Research Trends and Frontiers in the Etiology of Premature Ovarian Insufficiency Bibliometric Analysis.

Endocr Metab Immune Disord Drug Targets. 2025

[5]
Glycosylation in autoimmune diseases: A bibliometric and visualization study.

Heliyon. 2024-4-23

本文引用的文献

[1]
COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms.

Rev Invest Clin. 2022

[2]
The performance of artificial intelligence-driven technologies in diagnosing mental disorders: an umbrella review.

NPJ Digit Med. 2022-7-7

[3]
Machine learning in clinical decision making.

Med. 2021-6-11

[4]
Machine-Learning-Based Bibliometric Analysis of Pancreatic Cancer Research Over the Past 25 Years.

Front Oncol. 2022-3-28

[5]
MeSH and text-word search strategies: precision, recall, and their implications for library instruction.

J Med Libr Assoc. 2022-1-1

[6]
Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging.

Front Cardiovasc Med. 2022-1-4

[7]
AI in health and medicine.

Nat Med. 2022-1

[8]
Using topic modelling for unsupervised annotation of electronic health records to identify an outbreak of disease in UK dogs.

PLoS One. 2021

[9]
Application of Artificial Intelligence in Medicine: An Overview.

Curr Med Sci. 2021-12

[10]
Analyzing Patient Trajectories With Artificial Intelligence.

J Med Internet Res. 2021-12-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索