Suppr超能文献

基于 OLCI 数据监测长江平原内陆水体的颗粒态磷浓度并了解其与驱动因素的关系。

Monitoring the particulate phosphorus concentration of inland waters on the Yangtze Plain and understanding its relationship with driving factors based on OLCI data.

机构信息

School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.

Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China.

出版信息

Sci Total Environ. 2022 Feb 25;809:151992. doi: 10.1016/j.scitotenv.2021.151992. Epub 2021 Dec 7.

Abstract

Tracking the spatiotemporal dynamics of particulate phosphorus concentration (C) and understanding its regulating factors is essential to improve our understanding of its impact on inland water eutrophication. However, few studies have assessed this in eutrophic inland lakes, owing to a lack of suitable bio-optical algorithms allowing the use of remote sensing data. Herein, a novel semi-analytical algorithm of C was developed to estimate C in lakes on the Yangtze Plain, China. The independent validations of the proposed algorithm showed a satisfying performance with the mean absolute percentage error and root mean square error less than 27% and 27 μg/L, respectively. The Ocean and Land Color Instrument observations revealed a remarkable spatiotemporal heterogeneity of C in 23 lakes on the Yangtze Plain from 2016 to 2020, with the lowest value in December (62.91 ± 34.59 μg/L) and the highest C in August (114.9 ± 51.69 μg/L). Among the 23 examined lakes, the highest mean C was found in Lake Poyang (124.58 ± 44.71 μg/L), while the lowest value was found in Lake Qiandao (33.51 ± 4.71 μg/L). Additionally, 13 lakes demonstrated significant decreasing or increasing trends (P < 0.05) of annual mean C during the observation period. The driving factor analysis revealed that four natural factors (wind speed, air temperature, precipitation, and sunshine duration) and two anthropogenic factors (the normalized difference vegetation index and nighttime light) combined explained more than 91% of the variation in C, while the impacts of these factors on C showed considerable differences among lakes. This study offered a novel and scalable algorithm for the study of the spatiotemporal variation of C in inland waters and provided new insights into the regulating factors in water eutrophication.

摘要

跟踪颗粒态磷浓度(C)的时空动态,了解其调控因子,对于提高我们对内陆水富营养化影响的认识至关重要。然而,由于缺乏允许使用遥感数据的合适的生物光学算法,很少有研究评估富营养化内陆湖泊中的这一点。在此,我们开发了一种新的半分析算法,用于估算中国长江平原湖泊中的 C。该算法的独立验证结果表明,其性能令人满意,平均绝对百分比误差和均方根误差均小于 27%和 27μg/L。海洋和陆地颜色仪器的观测结果显示,2016 年至 2020 年期间,长江平原 23 个湖泊的 C 具有显著的时空异质性,12 月最低(62.91±34.59μg/L),8 月最高(114.9±51.69μg/L)。在所研究的 23 个湖泊中,鄱阳湖的平均 C 最高(124.58±44.71μg/L),而千岛湖中 C 的最低值为 33.51±4.71μg/L。此外,在观测期间,13 个湖泊的年平均 C 表现出显著的减少或增加趋势(P<0.05)。驱动因素分析表明,四个自然因素(风速、空气温度、降水和日照时间)和两个人为因素(归一化植被指数和夜间灯光)共同解释了 C 变化的 91%以上,而这些因素对 C 的影响在湖泊之间存在显著差异。本研究为内陆水域 C 时空变化的研究提供了一种新颖且可扩展的算法,并为水富营养化的调控因素提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验